Skip to main content

Genome-Wide Association Studies with Metabolomics

  • Chapter
  • First Online:
Genetics Meets Metabolomics

Abstract

Disturbances in metabolism are at the root of a variety of human afflictions and complex diseases. Although many of the genes that contribute to these conditions have been identified since the completion of the human genome by genome-wide association studies, it is still unclear for many of these genetic variants how they disrupt cellular processes. In this chapter we shall present the concept of genome-wide association studies with metabolomics. These studies show how combining two highly sophisticated biochemical measurement methods, genetics and metabolomics, applied to only a small amount of blood, can reveal deep insights into the genetic makeup of the human body’s metabolic capacities. In addition to providing functional insights into the genetic basis of metabolic traits and complex diseases, study of what we call “genetically determined metabotypes” is a way to understand an individual’s uniqueness. These genetically determined metabotypes may modify the risk of an individual to develop a disease, the response to medication and therapy, and the reaction to environmental challenges and thereby help to develop highly targeted, personalized therapies and enable novel types of treatments or prevent adverse drug reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mootha VK, Hirschhorn JN (2010) Inborn variation in metabolism. Nat Genet 42:97–98

    Article  PubMed  CAS  Google Scholar 

  2. WTCCC (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  Google Scholar 

  3. Hindorff LA, Sethupathy P, Junkins HA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106:9362–9367

    Article  PubMed  CAS  Google Scholar 

  4. Silventoinen K, Sammalisto S, Perola M et al (2003) Heritability of adult body height: a comparative study of twin cohorts in eight countries. Twin Res 6:399–408

    PubMed  Google Scholar 

  5. Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456:18–21

    Article  PubMed  CAS  Google Scholar 

  6. Yang J, Benyamin B, McEvoy BP et al (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569

    Article  PubMed  CAS  Google Scholar 

  7. Gieger C, Geistlinger L, Altmaier E et al (2008) Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 4:e1000282

    Article  PubMed  Google Scholar 

  8. Tanaka T, Shen J, Abecasis GR et al (2009) Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genet 5:e1000338

    Article  PubMed  Google Scholar 

  9. Hicks AA, Pramstaller PP, Johansson A et al (2009) Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genet 5:e1000672

    Article  PubMed  Google Scholar 

  10. Illig T, Gieger C, Zhai G et al (2010) A genome-wide perspective of genetic variation in human metabolism. Nat Genet 42:137–141

    Article  PubMed  CAS  Google Scholar 

  11. Nicholson G, Rantalainen M, Li JV et al (2011) A genome-wide metabolic QTL analysis in Europeans implicates two loci shaped by recent positive selection. PLoS Genet 7:e1002270

    Article  PubMed  CAS  Google Scholar 

  12. Suhre K, Shin SY, Petersen AK et al (2011) Human metabolic individuality in biomedical and pharmaceutical research. Nature 477:54–60

    Article  PubMed  CAS  Google Scholar 

  13. Suhre K, Wallaschofski H, Raffler J et al (2011) A genome-wide association study of metabolic traits in human urine. Nat Genet 43:565–569

    Article  PubMed  CAS  Google Scholar 

  14. Kottgen A, Pattaro C, Boger CA et al (2010) New loci associated with kidney function and chronic kidney disease. Nat Genet 42:376–384

    Article  PubMed  Google Scholar 

  15. Chambers JC, Zhang W, Lord GM et al (2010) Genetic loci influencing kidney function and chronic kidney disease. Nat Genet 42:373–375

    Article  PubMed  CAS  Google Scholar 

  16. Doring A, Gieger C, Mehta D et al (2008) SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet 40:430–436

    Article  PubMed  Google Scholar 

  17. Caulfield MJ, Munroe PB, O’Neill D et al (2008) SLC2A9 is a high-capacity urate transporter in humans. PLoS Med 5:e197

    Article  PubMed  Google Scholar 

  18. Schadt EE, Lamb J, Yang X et al (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37:710–717

    Article  PubMed  CAS  Google Scholar 

  19. Chen Y, Zhu J, Lum PY et al (2008) Variations in DNA elucidate molecular networks that cause disease. Nature 452:429–435

    Article  PubMed  CAS  Google Scholar 

  20. Yang X, Deignan JL, Qi H et al (2009) Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nat Genet 41:415–423

    Article  PubMed  CAS  Google Scholar 

  21. Teslovich TM, Musunuru K, Smith AV et al (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466:707–713

    Article  PubMed  CAS  Google Scholar 

  22. Link E, Parish S, Armitage J et al (2008) SLCO1B1 variants and statin-induced myopathy–a genomewide study. N Engl J Med 359:789–799

    Article  PubMed  CAS  Google Scholar 

  23. Klein TE, Chang JT, Cho MK et al (2001) Integrating genotype and phenotype information: an overview of the PharmGKB project. Pharmacogenetics research network and knowledge base. Pharmacogenomics J 1:167–170

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Suhre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Suhre, K. (2012). Genome-Wide Association Studies with Metabolomics. In: Suhre, K. (eds) Genetics Meets Metabolomics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1689-0_16

Download citation

Publish with us

Policies and ethics