Skip to main content

Understanding Cancer Metabolism Through Global Metabolomics

  • Chapter
  • First Online:
Genetics Meets Metabolomics

Abstract

After a hiatus of nearly 30 years, the interest in and research towards understanding cancer cell growth and function from a metabolic standpoint has returned. Much of the research for the past 30 years has focused entirely on molecular biology and, while some stunning discoveries have been made with regard to oncogenes, other aspects of cancer cells have largely gone unnoticed “as reported by McKnight (Science 330:1338–1339, 2010).” This renewed interest in cancer cell metabolism coincides with the timely development of global metabolomics as a key technology that provides an unrivaled tool for understanding metabolism “as reported by Evans (Anal Chem 81:6656–6667, 2009).” Through this unique ability to monitor the concentration changes in these biochemicals, we are better able to identify and understand metabolic differences in cancer cells relative to normal cells. The focus of this chapter will be to better educate the reader about the importance of understanding cancer metabolism and how global metabolomics is an ideal technology for gaining these new insights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530

    Article  PubMed  CAS  Google Scholar 

  2. Stubbs M, Griffiths JR (2010) The altered metabolism of tumors: HIF-1 and its role in the Warburg effect. Adv Enzyme Regul 50:44–55

    Article  PubMed  Google Scholar 

  3. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    Article  PubMed  CAS  Google Scholar 

  4. Riefke B, Mumberg D, Kroemer G et al (2007) Preface. In: Keun K, Steger-Hartmann T, Petersen K et al (eds) Oncogenes meet metabolism. From deregulated genes to a broader understanding of tumour physiology. Springer, Berlin

    Google Scholar 

  5. Dang CV, Lewis BC, Dolde C, Dang G, Shim H (1997) Oncogenes in tumor metabolism, tumorigenesis, and apoptosis. J Bioenerg Biomembr 29:345–354

    Article  PubMed  CAS  Google Scholar 

  6. Zhang Y, Dai Y, Wen J et al (2011) Detrimental effects of adenosine signaling in sickle cell disease. Nat Med 17:79–86

    Article  PubMed  CAS  Google Scholar 

  7. Takei M, Ando Y, Saitoh W et al (2010) Ethylene glycol monomethyl ether-induced toxicity is mediated through the inhibition of flavoprotein dehydrogenase enzyme family. Toxicol Sci 118:643–652

    Article  PubMed  CAS  Google Scholar 

  8. Barnes VM, Teles R, Trivedi HM et al (2010) Assessment of the effects of dentifrice on periodontal disease biomarkers in gingival crevicular fluid. J Periodontol 81:1273–1279

    Article  PubMed  CAS  Google Scholar 

  9. Evans AM, Dehaven CD, Barrett T, Mitchell M, Milgram E (2009) Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 81:6656–6667

    Article  PubMed  CAS  Google Scholar 

  10. Dehaven CD, Evans AM, Dai H, Lawton KA (2010) Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J Cheminf 2:9

    Article  Google Scholar 

  11. Scatena R, Bottoni P, Pontoglio A, Giardina B (2010) Revisiting the Warburg effect in cancer cells with proteomics. The emergence of new approaches to diagnosis, prognosis and therapy. Proteomics Clin Appl 4:143–158

    Article  PubMed  CAS  Google Scholar 

  12. Deberardinis RJ, Mancuso A, Daikhin E et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104:19345–19350

    Article  PubMed  CAS  Google Scholar 

  13. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  PubMed  CAS  Google Scholar 

  14. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  PubMed  CAS  Google Scholar 

  15. Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276

    Article  PubMed  CAS  Google Scholar 

  16. Sonveaux P, Vegran F, Schroeder T et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942

    PubMed  CAS  Google Scholar 

  17. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777

    Article  PubMed  CAS  Google Scholar 

  18. Hagland H, Nikolaisen J, Hodneland LI et al (2007) Targeting mitochondria in the treatment of human cancer: a coordinated attack against cancer cell energy metabolism and signalling. Expert Opin Ther Targets 11:1055–1069

    Article  PubMed  CAS  Google Scholar 

  19. Tong X, Zhao F, Thompson CD (2009) The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr Opin Genet Dev 19:32–37

    Article  PubMed  CAS  Google Scholar 

  20. Jiang P, Du W, Wang X et al (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13:310–316

    Article  PubMed  CAS  Google Scholar 

  21. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  PubMed  CAS  Google Scholar 

  22. Ducray F, Marie Y, Sanson M (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:2248–2249

    Article  PubMed  CAS  Google Scholar 

  23. De Carli E, Wang X, Puget S (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:2248–2249

    Article  PubMed  Google Scholar 

  24. Kang MR, Kim MS, Oh JE et al (2009) Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int J Cancer 125:353–355

    Article  PubMed  CAS  Google Scholar 

  25. Sjoblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    Article  PubMed  Google Scholar 

  26. Lopez GY, Reitman ZJ, Solomon D et al (2010) IDH1(R132) mutation identified in one human melanoma metastasis, but not correlated with metastases to the brain. Biochem Biophys Res Commun 398:585–587

    Article  PubMed  CAS  Google Scholar 

  27. Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744

    Article  PubMed  CAS  Google Scholar 

  28. Bralten LB, Kloosterhof NK, Balvers R et al (2011) IDH1 R132H decreases proliferation of glioma cell lines in vitro and in vivo. Ann Neurol 69:455–463

    Article  PubMed  CAS  Google Scholar 

  29. Houillier C, Wang X, Kaloshi G et al (2010) IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology 75:1560–1566

    Article  PubMed  CAS  Google Scholar 

  30. Nomura DK, Long JZ, Niessen S et al (2010) Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140:49–61

    Article  PubMed  CAS  Google Scholar 

  31. Janardhan S, Srivani P, Sastry GN (2006) Choline kinase: an important target for cancer. Curr Med Chem 13:1169–1186

    Article  PubMed  CAS  Google Scholar 

  32. Glunde K, Serkova NJ (2006) Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism. Pharmacogenomics 7:1109–1123

    Article  PubMed  CAS  Google Scholar 

  33. Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43:143–181

    Article  PubMed  CAS  Google Scholar 

  34. Sorensen RB, Hadrup SR, Svane IM et al (2011) Indoleamine 2,3-dioxygenase specific, cytotoxic T cells as immune regulators. Blood 117:2200–2210

    Article  PubMed  Google Scholar 

  35. Sas K, Robotka H, Toldi J, Vecsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239

    Article  PubMed  CAS  Google Scholar 

  36. Kallberg E, Wikstrom P, Bergh A, Ivars F, Leanderson T (2010) Indoleamine 2,3-dioxygenase (IDO) activity influence tumor growth in the TRAMP prostate cancer model. Prostate 70:1461–1470

    Article  PubMed  Google Scholar 

  37. Leung BS, Stout LE, Shaskan EG, Thompson RM (1992) Differential induction of indoleamine-2,3-dioxygenase (IDO) by interferon-gamma in human gynecologic cancer cells. Cancer Lett 66:77–81

    Article  PubMed  CAS  Google Scholar 

  38. Karanikas V, Zamanakou M, Kerenidi T et al (2007) Indoleamine 2,3-dioxygenase (IDO) expression in lung cancer. Cancer Biol Ther 6:1258–1262

    Article  PubMed  CAS  Google Scholar 

  39. Prendergast GC, Metz R, Muller AJ (2010) Towards a genetic definition of cancer-associated inflammation: role of the IDO pathway. Am J Pathol 176:2082–2087

    Article  PubMed  Google Scholar 

  40. Macchiarulo A, Camaioni E, Nuti R, Pellicciari R (2009) Highlights at the gate of tryptophan catabolism: a review on the mechanisms of activation and regulation of indoleamine 2,3-­dioxygenase (IDO), a novel target in cancer disease. Amino Acids 37:219–229

    Article  PubMed  CAS  Google Scholar 

  41. Lee SY, Choi HK, Lee KJ et al (2009) The immune tolerance of cancer is mediated by IDO that is inhibited by COX-2 inhibitors through regulatory T cells. J Immunother 32:22–28

    Article  PubMed  CAS  Google Scholar 

  42. Inaba T, Ino K, Kajiyama H et al (2010) Indoleamine 2,3-dioxygenase expression predicts impaired survival of invasive cervical cancer patients treated with radical hysterectomy. Gynecol Oncol 117:423–428

    Article  PubMed  CAS  Google Scholar 

  43. Liu X, Newton RC, Friedman SM, Scherle PA (2009) Indoleamine 2,3-dioxygenase, an emerging target for anti-cancer therapy. Curr Cancer Drug Targets 9:938–952

    Article  PubMed  CAS  Google Scholar 

  44. Olsen LS, Hjarnaa PJ, Latini S et al (2004) Anticancer agent CHS 828 suppresses nuclear factor-kappa B activity in cancer cells through downregulation of IKK activity. Int J Cancer 111:198–205

    Article  PubMed  CAS  Google Scholar 

  45. Watson M, Roulston A, Belec L et al (2009) The small molecule GMX1778 is a potent inhibitor of NAD  +  biosynthesis: strategy for enhanced therapy in nicotinic acid phosphoribosyltransferase 1-deficient tumors. Mol Cell Biol 29:5872–5888

    Article  PubMed  CAS  Google Scholar 

  46. Roulston A, Watson M, Bernier C et al (2007) GMX1777: a novel inhibitor of NAD  +­  biosynthesis via inhibition of nicotinamide phosphoribosyl transferase. American Association of Cancer Research-NCI-EORTC international conference on molecular targets and cancer therapeutics [Online]

    Google Scholar 

  47. Beauparlant P, Bedard D, Bernier C et al (2009) Preclinical development of the nicotinamide phosphoribosyl transferase inhibitor prodrug GMX1777. Anticancer Drugs 20:346–354

    Article  PubMed  CAS  Google Scholar 

  48. Sreekumar A, Poisson LM, Rajendiran TM et al (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457:910–914

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael V. Milburn Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Milburn, M.V., Lawton, K.A., McDunn, J.E., Ryals, J.A., Guo, L. (2012). Understanding Cancer Metabolism Through Global Metabolomics. In: Suhre, K. (eds) Genetics Meets Metabolomics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1689-0_12

Download citation

Publish with us

Policies and ethics