Skip to main content

How did Flowering Plants Learn to Avoid Blind Date Mistakes?

Self-Incompatibility in Plants and Comparisons with Nonself Rejection in the Immune Response

  • Chapter
Self and Nonself

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 738))

Abstract

Self-incompatibility (SI) is a common form of genetically-controlled mate-selection that prevents mating between closely related plants of the same species. SI occurs in about half of all flowering plant species. It has been studied extensively in the Papaveraceae (poppy), Brassicaceae (Arabidopsis, cabbage etc), Solanaceae (potato, tomato etc), Plantaginaceae (snapdragon) and Rosaceae (apple, cherry and peach etc). The self-recognition inherent in self-incompatibility has similarities with animal and plant immunity systems giving rise to speculation that the systems are related. Both systems display balancing selection, ‘self/nonself’ recognition, high polymorphism, high specificity and there are also some similarities in the rejection mechanisms deployed in the two systems. Whether these systems have diverged from a common predecessor is discussed, however similarities may be driven more by biological problems and the available molecular machinery to solve them than by an evolutionary relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Darwin C. The Effects of Cross and Self-Fertilization in the Vegetable Kingdom. London: John Murray; 1868.

    Google Scholar 

  2. Nasrallah JB. Recognition and rejection of self in plant self-incompatibility: Comparisons to animal histocompatibility. Trends Immunol 2005; 26:412–418.

    Article  PubMed  CAS  Google Scholar 

  3. Sanabria N, Goring D, Nurnburger T et al. Self/nonself perception and recognition mechanisms in plants: A comparison of self-incompatibility and innate immunity. New Phytol 2008; 178:503–514.

    Article  PubMed  CAS  Google Scholar 

  4. Penn DJ, Potts WK. The evolution of mating preference and major histocompatibility complex genes. The American Naturalist 1999; 153(2):148–163.

    Article  Google Scholar 

  5. de Nettancourt D. Incompatibility and Incongruity in Wild and Cultivated Plants. 2nd ed. Berlin: Springer-Verlag; 2001.

    Google Scholar 

  6. Richman A. Evolution of balanced genetic polymorphism. Mol Ecol 2000; 9:1953–1964.

    Article  PubMed  CAS  Google Scholar 

  7. Richman AD, Kohn JR. Learning from rejection: The evolutionary biology of single-locus incompatibility. Trends in Ecol Evol 1996; 11:497–502.

    Article  CAS  Google Scholar 

  8. Wright S. The distribution of self-sterility alleles in populations. Genetics 1939; 24:538–552.

    PubMed  CAS  Google Scholar 

  9. Charlesworth D, Morgan MT, Charlesworth B. Inbreeding depression, genetic load and the evolution of outbreeding rates in multilocus system with no linkage. Evolution 1990; 44(6):1469–1489.

    Article  Google Scholar 

  10. Crane PR, Friis EM, Pedersen KR. The origin and early diversification of the angiosperms. Nature 1995; 374:27–33.

    Article  CAS  Google Scholar 

  11. Palmer JD, Soltis DE, Chase MW. The plant tree of life: An overview and some points of view. Am J Bot 2004; 91(10):1473–1445.

    Article  Google Scholar 

  12. Hughes NF. Palaeobiology of Angiosperm Origin. Cambridge: Cambridge University; 1994.

    Google Scholar 

  13. Claire WG. Introducing Conifers. Dordrecht, Netherlands: Springer Netherlands; 2009.

    Google Scholar 

  14. Brackenbury J. Insects and Flowers: A Biological Partnership. Dorset, England: Blandford Press; 1995.

    Google Scholar 

  15. Russell SD. Double Fertilization. San Diego: Academic Press; 1992.

    Google Scholar 

  16. de Nettancourt D. Incompatibility in angiosperms. Sex Plant Reprod 1997; 10:185–199.

    Article  Google Scholar 

  17. Hogonboom NG. A model for incongruity: Two different mechanisms for the nonfunctioning of intimate partner relationships. Euphytica 1973; 22:219–233.

    Article  Google Scholar 

  18. Hogonboom NG. Incompatibility and incongruity: Two different mechanisms for the nonfunctioning of intimate partner relationships. Proc R Soc Lond 1975; 188:361–375.

    Article  Google Scholar 

  19. McCubbin AG, Kao T-H. Molecular recognition and response in pollen pistil interactions. Ann Rev Cell Dev Biol 2000; 16:333–364.

    Article  CAS  Google Scholar 

  20. Igic B, Kohn JR. Historical inferences from the self-incompatibility locus. New Phytol 2003; 161:97–105.

    Article  Google Scholar 

  21. Silva NF, Goring DR. Mechanisms of self-incompatibility in flowering plants. Cell Mol Life Sci 2001; 58:1988–2007.

    Article  PubMed  CAS  Google Scholar 

  22. Darwin CR. The Different Forms of Flowers on Plants of the Same Species. 1st ed: John Murray; 1877.

    Google Scholar 

  23. Igic B, Smith WA, Robertson KA et al. Studies of self-incompatibility in wild tomatoes: 1. S-allele diversity in solanum chilense dun. (solanaceae). Heredity 2007; 99:553–561.

    Article  PubMed  CAS  Google Scholar 

  24. Takayama S, Shiba H, Iwano M et al. The pollen determinant of self-incompatibility in brassica campestris. Proc Natl Acad Sci USA 2000; 97:1920–1925.

    Article  PubMed  CAS  Google Scholar 

  25. Takayama S, Isogai A. Self-incompatibility in plants. Ann Rev Plant Biol 2005; 56:467–489.

    Article  CAS  Google Scholar 

  26. McClure BA, Franklin-Tong V. Gametophytic self-incompatibility: Understanding the cellular mechanisms involved in “self” pollen tube inhibition. Planta 2006; 226:233–245.

    Article  Google Scholar 

  27. Jones JDG, Dangi JL. The plant immune system. Nature 2006; 444:323–329.

    Article  PubMed  CAS  Google Scholar 

  28. Nurnburger T, Brunner F. Innate immunity in plants and animals: Emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr Opin Plant Biol 2002; 5(4):318–324.

    Article  Google Scholar 

  29. Dangl JL, Jones JDG. Plant pathogens and integrated defense responses to infection. Nature 2001; 411:826–833.

    Article  PubMed  CAS  Google Scholar 

  30. Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989; 54:1–13.

    Article  PubMed  CAS  Google Scholar 

  31. Kobe B, Deisenhofer J. Proteins with leucine-rich repeats. Curr Opin Struct Biol 1995; 5:409–416.

    Article  PubMed  CAS  Google Scholar 

  32. Ausubel FM. Are immune signaling pathways in plants and animals conserved? Nature 2005; 6(10):973–979.

    CAS  Google Scholar 

  33. Gomez-Gomez L, Boller T. Flagellin perception: A paradigm for innate immunity. Trends in plant science 2002; 7(6):251–256.

    Article  PubMed  CAS  Google Scholar 

  34. Gomez-Gomez L, Boller T. Fls2: An lrr receptor-like-kinase involved in the perception of the bacterial elicitor flagellin in arabidopsis. Mol Cell 2000; 5:1003–1011.

    Article  PubMed  CAS  Google Scholar 

  35. Gomez-Gomez L, Felix G, Boller T. A single locus determines sensitivity to bacterial flagellin in arabidopsis thaliana. The Plant Journal 1999; 18(3):277–284.

    Article  PubMed  CAS  Google Scholar 

  36. McClure BA, Haring V, Ebert PR et al. Style self-incompatibility gene products of nicotiana alata are ribonucleases. Nature 1989; 342(6252):955–957.

    Article  PubMed  CAS  Google Scholar 

  37. Schopfer CR, Nasrallah ME, Nasrallah JB. The male determinant of self-incompatibility in brassica. Science 1999; 286:1697–1700.

    Article  PubMed  CAS  Google Scholar 

  38. Franklin-Tong VE, Franklin FCH. The different mechanisms of gametophytic self-incompatibility. Philos Trans R Soc Lond B Biol Sci 2003; 358(1434):1025–1032.

    Article  PubMed  CAS  Google Scholar 

  39. Hinata K, Nishio T. S-allele specificity of stigma proteins in brassica oleracea and b. Campestris. Heredity 1978; 41(1):93–100.

    Article  Google Scholar 

  40. Franklin-Tong V, Ruuth E, Marmey P et al. Characterization of a stigmatic component from papaver rhoeas l. Which exhibits the specific activity of a self-incompatibility (s-) gene product. New Phytol 1989; 112:307–315.

    Article  CAS  Google Scholar 

  41. Franklin-Tong VE, Ride JP, Franklin FCH. Recombinant stigmatic self-incompatibility (s-) protein elicits a ca2+ transient in pollen of papaver rhoeas. Plant J 1995; 8:299–307.

    Article  CAS  Google Scholar 

  42. Hearn M, Franklin FCH, Ride JP. Identification of a membrane glycoprotein in pollen of papaver rhoeas which binds stigmatic self-incompatibility (s-) proteins. Plant J 1996; 9:467–475.

    Article  CAS  Google Scholar 

  43. Kandasamy MK, Paolillo DJ, Faraday CD et al. The s-locus specific glycoproteins of brassica accumulate in the cell wall of developing stigma papillae. Developmental Biology 1989; 134:462–472.

    Article  PubMed  CAS  Google Scholar 

  44. Franklin-Tong VE, Holdaway-Clarke TL, Straatman KR et al. Involvement of extracellular calcium influx in the self-incompatibility response of papaver rhoeas. Plant J 2002; 29:333–345.

    Article  PubMed  CAS  Google Scholar 

  45. Thomas SG, Franklin-Tong VE. Self-incompatibility triggers programmed cell death in papaver pollen. Nature 2004; 429:305–309.

    Article  PubMed  CAS  Google Scholar 

  46. Wheeler MJ, Vatovec S, Franklin-Tong V. The pollen s-determinant in papaver: Comparisons with known plant receptors and protein ligand partners. J Exp Bot 2010; 61(7):2015–2025.

    Article  PubMed  CAS  Google Scholar 

  47. Newbigin E, Anderson MA, Clarke AE. Gametophytic self-incompatibility systems. Plant Cell 1993; 5:1315–1324.

    Article  PubMed  CAS  Google Scholar 

  48. Takayama S, Shimosato H, Shiba H et al. Direct ligand-receptor complex interaction controls brassica self-incompatibility. Nature 2001; 413:534–538.

    Article  PubMed  CAS  Google Scholar 

  49. Takasaki T, Hatakeyama K, Suzuki G et al. The s-receptor kinase determines self-incompatibility in brassica stigma. Nature 2000; 403:913–916.

    Article  PubMed  CAS  Google Scholar 

  50. Franklin FCH, Lawrence MJ, Franklin-Tong VE. Cell and molecular biology of self-incompatibility in flowering plants. Int Rev Cytol 1995; 158:1–64.

    Article  CAS  Google Scholar 

  51. Bredemeijer GMM, Blaas J. S-specific proteins in styles of self-incompatible nicotiana alata. Theor Appl Genet 1981; 59:185–190.

    Article  CAS  Google Scholar 

  52. Anderson MA, Cornish EC, Mau S-L et al. Cloning of cdna for a stylar glycoprotein associated with expression of self-incompatibility in nicotiana alata. Nature 1986; 321:38–44.

    Article  CAS  Google Scholar 

  53. Johnson PF, McKnight SL. Eukaryotic transcriptional regulatory proteins. Annu Rev Biochem 1989; 58:799–839.

    Article  PubMed  CAS  Google Scholar 

  54. Anderson MA, McFadden GI, Bernatzky R et al. Sequence variability of three alleles of the self-incompatibility gene of nicotiana alata. Plant Cell 1989; 1:483–491.

    Article  PubMed  CAS  Google Scholar 

  55. Woodward JR, Bacic A, Jahnen W et al. N-linked glycan chains on s-allele-associated glycoproteins from nicotiana alata. Plant Cell 1989; 1(May):511–514.

    Article  PubMed  CAS  Google Scholar 

  56. Karunanandaa B, Huang S, Kao T-H. Carbohydrate moiety of the petunia inflata s3 protein is not required for self-incompatibility interactions between pollen and pistil. Plant Cell 1994; 6:1933–1940.

    Article  PubMed  CAS  Google Scholar 

  57. McClure BA, Gray JE, Anderson MA et al. Self-incompatibility in nicotiana alata involves degradation of pollen rrna. Nature 1990; 347:757–760.

    Article  CAS  Google Scholar 

  58. Gray JE, McClure BA, Bönig I et al. Action of the style product of the self-incompatibility gene of nicotiana alata (s-rnase) on in vitro-grown pollen tubes. Plant Cell 1991; 3:271–283.

    Article  PubMed  CAS  Google Scholar 

  59. Ioerger TR, Gohlke JR, Xu B et al. Primary structural features of the self-incompatibility protein in solanaceae. Sex Plant Reprod 1991; 4:81–87.

    Article  Google Scholar 

  60. Matsuura T, Sakai H, Unno M et al. Crystal structure at 1.5a resolution of pyrus pyrifolia pistil ribonuclease responsible for gametophytic self-incompatibility. J Biol Chem 2001; 276:45261–45269.

    Article  PubMed  CAS  Google Scholar 

  61. Zurek DM, Mou B, Beecher B et al. Exchanging sequence domains between s-rnases from nicotiana alata disrupts pollen recognition. Plant J 1997; 11:797–808.

    Article  PubMed  CAS  Google Scholar 

  62. Matton DP, Maes O, Laublin G et al. Hypervariable domains of self-incompatibility rnases mediate allele-specific pollen recognition. Plant Cell 1997; 9:1757–1766.

    Article  PubMed  CAS  Google Scholar 

  63. Matton DP, Luu DT, Xike Q et al. Production of an s rnase with dual specificity suggests a novel hypothesis for the generation of new s alleles. Plant Cell 1999; 11:2087–2097.

    Article  PubMed  CAS  Google Scholar 

  64. Lee H-S, Huang S, Kao T-h. S proteins control rejection of incompatible pollen in petunia inflata. Nature 1994; 367:560–563.

    Article  PubMed  CAS  Google Scholar 

  65. Murfett J, Atherton TL, Mou B et al. S-rnase expressed in transgenic nicotiana causes s-allele-specific pollen rejection. Nature 1994; 367:563–566.

    Article  PubMed  CAS  Google Scholar 

  66. O’Brien M, Kapfer C, Major G et al. Molecular analysis of the stylar-expressed solanum chacoense asparagine-rich protein family related to the ht modifier of gametophytic self-incompatibility in nicotiana. Plant J 2002; 32:1–12.

    Article  Google Scholar 

  67. McClure BA, Mou B, Canevascini S et al. A small asparagine-rich protein required for s-allele-specific pollen rejection in nicotiana. Proc Nat Acad Sci USA 1999; 96:13548–13553.

    Article  PubMed  CAS  Google Scholar 

  68. Kondo K, McClure B. New microsome-associated ht-family proteins from nicotiana respond to pollination and define an ht/nod-24 protein family. Mol Plant 2008; 1:634–644.

    Article  PubMed  CAS  Google Scholar 

  69. Lind JL, Bacic A, Clarke AE et al. A style-specific hydroxyproline-rich glycoprotein with properties of both extensins and arabinogalactan proteins. Plant J 1994; 6(4):491–502.

    Article  PubMed  CAS  Google Scholar 

  70. Cruz-Garcia F, Hancock CN, Kim D et al. Stylar glycoproteins bind to s-rnase in vitro. Plant J 2005; 42:295–304.

    Article  PubMed  CAS  Google Scholar 

  71. Lind JL, Bönig I, Clarke AE et al. A style-specific 120 kda glycoprotein enters pollen tubes of nicotiana alata in vivo. Sex Plant Reprod 1996; 9:75–86.

    Article  Google Scholar 

  72. Qiao H, Wang F, Zhao L et al. The f-box protein ahslf-s2 controls the pollen function of s-rnase-based self-incompatibility. Plant Cell 2004; 16:2307–2322.

    Article  PubMed  CAS  Google Scholar 

  73. Lai Z, Ma W, Han B et al. An f-box gene linked to the self-incompatibility (s) locus of antirrhinum is expressed specifically in pollen and tapetum. Plant Mol Biol 2002; 50:29–42.

    Article  PubMed  CAS  Google Scholar 

  74. McCubbin AG, Wang X, Kao T-h. Identification of self-incompatibility (s-) locus linked pollen cdna markers in petunia inflata. Genome 2000; 43:619–627.

    PubMed  CAS  Google Scholar 

  75. Hua ZH, Kao T-h. Identification and characterization of components of a putitative petunia s-locus f-box containing e3 ligase complex involved in s-rnase-based self-incompatibility. Plant Cell 2006; 18:2531–2553.

    Article  PubMed  CAS  Google Scholar 

  76. Qiao H, Wang H, Zhao L et al. The f-box protein ahslf-s2 physically interacts with s-rnases that may be inhibited by the ubiquitin/26s proteasome pathway of protein degradation during compatible pollination in antirrhinum. Plant Cell 2004; 16:582–595.

    Article  PubMed  CAS  Google Scholar 

  77. Huang J, Zhao L, Yang Q et al. Ahssk1, a novel skp1-like protein that interacts with the s-locus f-box protein slf. Plant J 2006; 46:780–793.

    Article  PubMed  CAS  Google Scholar 

  78. Bai C, Sen P, Hofmann K et al. Skp1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the f-box. Cell 1996; 86:263–274.

    Article  PubMed  CAS  Google Scholar 

  79. Stone SL, Anderson EM, Mullen RT et al. Arc1 is an e3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible brassica pollen. Plant Cell 2003; 15:885–898.

    Article  PubMed  Google Scholar 

  80. Sijacic P, Wang X, Skirpan AL et al. Identification of the pollen determinant of s-rnase-mediated self-incompatibility. Nature 2004; 429:302–305.

    Article  PubMed  CAS  Google Scholar 

  81. McCubbin AG, Kao T-H. The emerging complexity of self-incompatibility (s-) loci. Sex Plant Reprod 1999; 12:1–5.

    Article  Google Scholar 

  82. Hancock CN, Kent L, McClure BA. The 120kda glycoprotein is required for s-specific pollen rejection in nicotiana. Plant J 2005; 43:716–723.

    Article  PubMed  CAS  Google Scholar 

  83. Ushijima K, Sassa H, Kusaba M et al. Characterization of the s-locus region of almond (prunus dulcis): Analysis of a somaclonal mutant and a cosmid contig for an s-haplotype. Genetics 2001; 158:379–386.

    PubMed  CAS  Google Scholar 

  84. Hua ZH, Fields A, Kao TH. Biochemical models for s-rnase-based self-incompatibility. Mol Plant 2008; 1:575–585.

    Article  PubMed  CAS  Google Scholar 

  85. Goldraij A, Kondo K, Lee CB et al. Compartmentalization of s-rnase and ht-b degradation in self-incompatible nicotiana. Nature 2006; 439:805–810.

    Article  PubMed  CAS  Google Scholar 

  86. Kao T-h, Tsukamoto T. The molecular and genetic bases of s-rnase-based self-incompatibility. Plant Cell 2004; 16(S):S72–S83.

    Article  PubMed  CAS  Google Scholar 

  87. Feuillet C, Reuzeau C, Kjellbom P et al. Molecular characterization of a new type of receptor-like kinase (wlrk) gene family in wheat. Plant Mol Biol 1998; 37:943–953.

    Article  PubMed  CAS  Google Scholar 

  88. Schierup MH, Mikkelsen AM, Hein J. Recombination, balancing selection and phylogenies in mhc and self-incompatibility genes. Genetics 2001; 159:1833–1844.

    PubMed  CAS  Google Scholar 

  89. Pearce G, Yamaguchi Y, Munske G et al. Structure-activity studies of atpep1, a plant peptide signal involved in the innate immune response. Peptide 2008; 29:2083–2089.

    CAS  Google Scholar 

  90. Graham MA, Silverstein KAT, Vanden Bosch KA. Defensin-like genes: Genomic perspectives on a diverse superfamily in plants. Crop Sci 2008; 48(S1):S3–S11.

    CAS  Google Scholar 

  91. Kachroo A, Nasrallah ME, Nasrallah JB. Self-incompatibility in the brassicaceae: Receptor-ligand signaling and cell-to-cell communication. Plant Cell 2002; 14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Kear .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Kear, P.J., McClure, B. (2012). How did Flowering Plants Learn to Avoid Blind Date Mistakes?. In: López-Larrea, C. (eds) Self and Nonself. Advances in Experimental Medicine and Biology, vol 738. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1680-7_7

Download citation

Publish with us

Policies and ethics