Skip to main content

Viral Immunomodulatory Proteins: Usurping Host Genes as a Survival Strategy

  • Chapter
Self and Nonself

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 738))

Abstract

Large DNA-containing viruses encode a plethora of gene products that are homologous to cellular proteins and key for their success in nature. During the millions of years of co-evolution with their respective hosts, viruses have extensively captured cellular genes, frequently duplicated them and insidiously shaped them to yield optimized specific molecules capable of either mimicking or interfering with the original host function and/or of executing novel tasks. A vast number of these gene products have become an integral part of the elaborated counteracting immune evasion strategies developed by viruses to withstand with the selective evolutionary pressure imposed by the host immune system. Cytomegaloviruses (CMVs) constitute an outstanding example of the many and varied encoded proteins directed to modulate both innate and adaptive immune responses, which determine their ability to establish life-long latency with sporadic shedding in their hosts. This chapter focuses on the current understanding of those genes encoded by human CMV (HCMV) with a known homology to cell proteins of the immune system. A systematic study of these genes, in addition to unraveling specific virus-host interactions, may supply valuable tools to dissect the molecular basis of immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shackelton LA, Holmes EC. The evolution of large DNA viruses: combining genomic information of viruses and their hosts. Trends Microbiol 2004; 12:458–465.

    PubMed  CAS  Google Scholar 

  2. Holzerlandt R, Orengo C, Kellam P et al. Identification of new herpesvirus gene homologs in the human genome. Genome Res 2002; 12:1739–1748.

    PubMed  CAS  Google Scholar 

  3. Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 2008; 9:267–276.

    PubMed  CAS  Google Scholar 

  4. Davison AJ. Evolution of the herpesviruses. Vet Microbiol 2002; 86:69–88.

    PubMed  CAS  Google Scholar 

  5. McGeoch DJ, Rixon FJ, Davison AJ. Topics in herpesvirus genomics and evolution. Virus Res 2006; 117:90–104.

    PubMed  CAS  Google Scholar 

  6. Brunovskis P, Kung HJ. Retrotransposition and herpesvirus evolution. Virus Genes 1995; 11:259–270.

    PubMed  CAS  Google Scholar 

  7. Kotenko SV, Saccani S, Izotova LS et al. Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc Natl Acad Sci USA 2000; 97:1695–700.

    PubMed  CAS  Google Scholar 

  8. Jayawardane G, Russell GC, Thomson J et al. A captured viral interleukin 10 gene with cellular exon structure. J Gen Virol 2008; 89:2447–2455.

    PubMed  CAS  Google Scholar 

  9. Elde NC, Malik HS. The evolutionary conundrum of pathogen mimicry. Nat Rev Microbiol 2009; 7:787–797.

    PubMed  CAS  Google Scholar 

  10. Raftery M, Müller A, Schönrich G. Herpesvirus homologues of cellular genes. Virus Genes 2000; 21(1–2):65–75.

    PubMed  CAS  Google Scholar 

  11. McFadden G, Murphy PM. Host-related immunomodulators encoded by poxviruses and herpesviruses. Curr Opin Microbiol 2000; 3:371–378.

    PubMed  CAS  Google Scholar 

  12. Mocarski ES, Shenk T, Pass, RF. Cytomegaloviruses. In: Kipe DM, Howley PM eds. Fields Virology. Philadelphia: Lippincott Williams and Wilkins, 2007; 2701–2772.

    Google Scholar 

  13. Powers C, DeFilippis V, Malouli D et al. Cytomegalovirus immune evasion. Curr Top Microbiol Immunol 2008; 325:333–359.

    PubMed  CAS  Google Scholar 

  14. Miller-Kittrell M, Sparer TE. Feeling manipulated: cytomegalovirus immune manipulation. Virol J 2009; 6:4.

    PubMed  Google Scholar 

  15. Michelson S. Consequences of human cytomegalovirus mimicry. Hum Immunol 2004; 65:465–475.

    PubMed  CAS  Google Scholar 

  16. Stern-Ginossar N, Elefant N, Zimmermann A et al. Host immune system gene targeting by a viral miRNA. Science 2007; 317:376–381.

    PubMed  CAS  Google Scholar 

  17. Gibson W. Structure and formation of the cytomegalovirus virion. Curr Top Microbiol Immunol 2008; 325:187–204.

    PubMed  CAS  Google Scholar 

  18. Sinzger C, Digel M, Jahn G. Cytomegalovirus cell tropism. Curr Top Microbiol Immunol 2008; 325:63–83.

    PubMed  CAS  Google Scholar 

  19. Krmpotic A, Bubic I, Polic B et al. Pathogenesis of murine cytomegalovirus infection. Microbes Infect 2003; 5:1263–1277.

    PubMed  CAS  Google Scholar 

  20. Davison AJ, Dolan A, Akter P et al. The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol 2003; 84:17–28.

    PubMed  CAS  Google Scholar 

  21. Cha TA, Tom E, Kemble GW et al. Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J Virol 1996; 70:78–83.

    PubMed  CAS  Google Scholar 

  22. Chee MS, Bankier AT, Beck S et al. Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 1990; 154:125–169.

    PubMed  CAS  Google Scholar 

  23. Lin A, Xu H, Yan W. Modulation of HLA expression in human cytomegalovirus immune evasion. Cell Mol Immunol 2007; 4:91–98.

    PubMed  Google Scholar 

  24. Hansen TH, Bouvier M. MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 2009; 9:503–513.

    PubMed  CAS  Google Scholar 

  25. López-Botet M, Angulo A Gumá M. Natural killer cell receptors for major histocompatibility complex class I and related molecules in cytomegalovirus infection. Tissue Antigens 2004; 63:195–203.

    PubMed  Google Scholar 

  26. Lanier LL. Evolutionary struggles between NK cells and viruses. Nat Rev Immunol 2008; 8:259–68.

    PubMed  CAS  Google Scholar 

  27. Wilkinson GW, Tomasec P, Stanton RJ et al. Modulation of natural killer cells by human cytomegalovirus. J Clin Virol 2008; 41:206–212.

    PubMed  CAS  Google Scholar 

  28. Beck S, Barrell BG. Human cytomegalovirus encodes a glycoprotein homologous to MHC class-I antigens. Nature 1988; 331:269–272.

    PubMed  CAS  Google Scholar 

  29. Browne H, Smith G, Beck S et al. A complex between the MHC class I homologue encoded by human cytomegalovirus and beta 2 microglobulin. Nature 1990; 347:770–772.

    PubMed  CAS  Google Scholar 

  30. Fahnestock ML, Johnson JL, Feldman RM et al. The MHC class I homolog encoded by human cytomegalovirus binds endogenous peptides. Immunity 1995; 3:583–590.

    PubMed  CAS  Google Scholar 

  31. Reyburn HT, Mandelboim O, Valés-Gómez M et al. The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells. Nature 1997; 386:514–517.

    PubMed  CAS  Google Scholar 

  32. Leong CC, Chapman TL, Bjorkman PJ et al. Modulation of natural killer cell cytotoxicity in human cytomegalovirus infection: the role of endogenous class I major histocompatibility complex and a viral class I homolog. J Exp Med 1998; 187:1681–1687.

    PubMed  CAS  Google Scholar 

  33. Odeberg J, Cerboni C, Browne H et al. Human cytomegalovirus (HCMV)-infected endothelial cells and macrophages are less susceptible to natural killer lysis independent of the downregulation of classical HLA class I molecules or expression of the HCMV class I homologue, UL18. Scand J Immunol 2002; 55:149–161.

    PubMed  CAS  Google Scholar 

  34. Prod’homme V, Griffin C, Aicheler RJ et al. The human cytomegalovirus MHC class I homolog UL18 inhibits LIR-1 but activates LIR-1-NK cells. J Immunol 2007; 178:4473–4481.

    CAS  Google Scholar 

  35. Willcox BE, Thomas LM, Bjorkman PJ. Crystal structure of HLA-A2 bound to LIR-1, a host and viral major histocompatibility complex receptor. Nat Immunol 2003; 4:913–919.

    PubMed  CAS  Google Scholar 

  36. Cosman D, Fanger N, Borges L et al. A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules. Immunity 1997; 7:273–282.

    PubMed  CAS  Google Scholar 

  37. Chapman TL, Heikeman AP, Bjorkman PJ. The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity 1999; 11:603–613.

    PubMed  CAS  Google Scholar 

  38. Valés-Gómez M, Shiroishi M, Maenaka K et al. Genetic variability of the major histocompatibility complex class I homologue encoded by human cytomegalovirus leads to differential binding to the inhibitory receptor ILT2. J Virol 2005; 79:2251–2260.

    PubMed  Google Scholar 

  39. Cerboni C, Achour A, Wärnmark A et al. Spontaneous mutations in the human CMV HLA class I homologue UL18 affect its binding to the inhibitory receptor LIR-1/ILT2/CD85j. Eur J Immunol 2006; 36:732–741.

    PubMed  CAS  Google Scholar 

  40. Wagner CS, Riise GC, Bergström T et al. Increased expression of leukocyte Ig-like receptor-1 and activating role of UL18 in the response to cytomegalovirus infection. J Immunol 2007; 178:3536–3543.

    PubMed  CAS  Google Scholar 

  41. Wagner CS, Ljunggren HG, Achour A. Immune modulation by the human cytomegalovirus-encoded molecule UL18, a mystery yet to be solved. J Immunol 2008; 180:19–24.

    PubMed  CAS  Google Scholar 

  42. Wills MR, Ashiru O, Reeves MB et al. Human cytomegalovirus encodes an MHC class I-like molecule (UL142) that functions to inhibit NK cell lysis. J Immunol 2005; 175: 7457–7465.

    PubMed  CAS  Google Scholar 

  43. Chalupny NJ, Rein-Weston A, Dosch S et al. Down-regulation of the NKG2D ligand MICA by the human cytomegalovirus glycoprotein UL142. Biochem Biophys Res Commun 2006; 346:175–181.

    PubMed  CAS  Google Scholar 

  44. Ashiru O, Bennett NJ, Boyle LH et al. NKG2D ligand MICA is retained in the cis-Golgi apparatus by human cytomegalovirus protein UL142. J Virol 2009; 83:12345–12354.

    PubMed  CAS  Google Scholar 

  45. Rawlinson WD, Farrell HE, Barrell BG. Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol 1996; 70:8833–8849.

    PubMed  CAS  Google Scholar 

  46. Chapman TL, Bjorkman PJ. Characterization of a murine cytomegalovirus class I major histocompatibility complex (MHC) homolog: comparison to MHC molecules and to the human cytomegalovirus MHC homolog. J Virol 1998; 72:460–466.

    PubMed  CAS  Google Scholar 

  47. Natarajan K, Hicks A, Mans J et al. Crystal structure of the murine cytomegalovirus MHC-I homolog m144. J Mol Biol 2006; 358:157–171.

    PubMed  CAS  Google Scholar 

  48. Farrell HE, Vally H, Lynch DM et al. Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo. Nature 1997; 386:510–514.

    PubMed  CAS  Google Scholar 

  49. Kubota A, Kubota S, Farrell HE et al. Inhibition of NK cells by murine CMV-encoded class I MHC homologue m144. Cell Immunol 1999; 191:145–151.

    PubMed  CAS  Google Scholar 

  50. Cretney E, Degli-Esposti MA, Densley EH et al. m144, a murine cytomegalovirus (MCMV)-encoded major histocompatibility complex class I homologue, confers tumor resistance to natural killer cell-mediated rejection. J Exp Med 1999; 190:435–444.

    PubMed  CAS  Google Scholar 

  51. Mans J, Zhi L, Revilleza MJ et al. Structure and function of murine cytomegalovirus MHC-I-like molecules: how the virus turned the host defense to its advantage. Immunol Res 2009; 43:264–279.

    PubMed  CAS  Google Scholar 

  52. Arase H, Mocarski ES, Campbell AE et al. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 2002; 296:1323–1326.

    PubMed  CAS  Google Scholar 

  53. Voigt V, Forbes CA, Tonkin JN et al. Murine cytomegalovirus m157 mutation and variation leads to immune evasion of natural killer cells. Proc Natl Acad Sci USA 2003; 100:13483–13488.

    PubMed  CAS  Google Scholar 

  54. Lodoen M, Ogasawara K, Hamerman JA et al. NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J Exp Med 2003; 197:1245–1253.

    PubMed  CAS  Google Scholar 

  55. Lodoen MB, Abenes G, Umamoto S et al. The cytomegalovirus m155 gene product subverts natural killer cell antiviral protection by disruption of H60-NKG2D interactions. J Exp Med 2004; 200:1075–1081.

    PubMed  CAS  Google Scholar 

  56. Hasan M, Krmpotic A, Ruzsics Z et al. Selective down-regulation of the NKG2D ligand H60 by mouse cytomegalovirus m155 glycoprotein. J Virol 2005; 79:2920–2930.

    PubMed  CAS  Google Scholar 

  57. Krmpotic A, Hasan M, Loewendorf A et al. NK cell activation through the NKG2D ligand MULT-1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145. J Exp Med 2005; 201:211–220.

    PubMed  CAS  Google Scholar 

  58. Ziegler H, Thale R, Lucin P et al. A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 1997; 6:57–66.

    PubMed  CAS  Google Scholar 

  59. Krmpotic A, Messerle M, Crnkovic-Mertens I et al. The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T-cell control in vivo. J Exp Med 1999; 190:1285–1296.

    PubMed  CAS  Google Scholar 

  60. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104:487–501.

    PubMed  CAS  Google Scholar 

  61. Watts TH. TNF/TNFR family members in costimulation of T-cell responses. Annu Rev Immunol 2005; 23:23–68.

    PubMed  CAS  Google Scholar 

  62. Cai G, Freeman GJ. The CD160, BTLA, LIGHT/HVEM pathway: a bidirectional switch regulating T-cell activation. Immunol Rev 2009; 229:244–258.

    PubMed  CAS  Google Scholar 

  63. Rahman MM, McFadden G. Modulation of tumor necrosis factor by microbial pathogens. PLoS Pathog 2006; 2:e4.

    PubMed  Google Scholar 

  64. Alcami A. Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 2003; 3:36–50.

    PubMed  CAS  Google Scholar 

  65. Benedict CA, Butrovich KD, Lurain NS et al. Cutting edge: a novel viral TNF receptor superfamily member in virulent strains of human cytomegalovirus. J Immunol 1999; 162:6967–6970.

    PubMed  CAS  Google Scholar 

  66. Sedý JR, Spear PG, Ware CF. Cross-regulation between herpesviruses and the TNF superfamily members. Nat Rev Immunol 2008; 8:861–873.

    PubMed  Google Scholar 

  67. Cheung TC, Humphreys IR, Potter KG et al. Evolutionarily divergent herpesviruses modulate T-cell activation by targeting the herpesvirus entry mediator cosignaling pathway. Proc Natl Acad Sci USA 2005; 102:13218–13223.

    PubMed  CAS  Google Scholar 

  68. Poole E, King CA, Sinclair JH et al. The UL144 gene product of human cytomegalovirus activates NFkappaB via a TRAF6-dependent mechanism. EMBO J 2006; 25:4390–4399.

    PubMed  CAS  Google Scholar 

  69. Lurain NS, Kapell KS, Huang DD et al. Human cytomegalovirus UL144 open reading frame: sequence hypervariability in low-passage clinical isolates. J Virol 1999; 73:10040–10050.

    PubMed  CAS  Google Scholar 

  70. Watts TH, Gommerman JL. The LIGHT and DARC sides of herpesvirus entry mediator. Proc Natl Acad Sci USA 2005; 102:13365–13366.

    PubMed  CAS  Google Scholar 

  71. Pestka S, Krause CD, Sarkar D et al. Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 2004; 22:929–979.

    PubMed  CAS  Google Scholar 

  72. Moore KW, de Waal Malefyt R, Coffman RL et al. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19:683–765.

    PubMed  CAS  Google Scholar 

  73. Slobedman B, Barry PA, Spencer JV et al. Virus-encoded homologs of cellular interleukin-10 and their control of host immune function. J Virol 2009; 83:9618–9629.

    PubMed  CAS  Google Scholar 

  74. Hughes AL. Origin and evolution of viral interleukin-10 and other DNA virus genes with vertebrate homologues. J Mol Evol 2002; 54:90–101.

    PubMed  CAS  Google Scholar 

  75. Spencer JV, Lockridge KM, Barry PA et al. Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J Virol 2002; 76:1285–1292.

    PubMed  CAS  Google Scholar 

  76. Chang WL, Baumgarth N, Yu D et al. Human cytomegalovirus-encoded interleukin-10 homolog inhibits maturation of dendritic cells and alters their functionality. J Virol 2004; 78:8720–8731.

    PubMed  CAS  Google Scholar 

  77. Raftery MJ, Wieland D, Gronewald S et al. Shaping phenotype, function and survival of dendritic cells by cytomegalovirus-encoded IL-10. J Immunol 2004; 173:3383–3391.

    PubMed  CAS  Google Scholar 

  78. Spencer JV, Cadaoas J, Castillo PR et al. Stimulation of B lymphocytes by cmvIL-10 but not LAcmvIL-10. Virology 2008; 374:164–169.

    PubMed  CAS  Google Scholar 

  79. Cheung AK, Gottlieb DJ, Plachter B et al. The role of the human cytomegalovirus UL111A gene in down-regulating CD4 T-cell recognition of latently infected cells: implications for virus elimination during latency. Blood 2009; 114:4128–4137.

    PubMed  CAS  Google Scholar 

  80. Jenkins C, Abendroth A, Slobedman B. A novel viral transcript with homology to human interleukin-10 is expressed during latent human cytomegalovirus infection. J Virol 2004; 78:1440–1447.

    PubMed  CAS  Google Scholar 

  81. Jenkins C, Garcia W, Abendroth A et al. Expression of a human cytomegalovirus latency-associated homolog of interleukin-10 during the productive phase of infection. Virology 2008; 370:285–294.

    PubMed  CAS  Google Scholar 

  82. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000; 12:121–127.

    PubMed  CAS  Google Scholar 

  83. Baggiolini M. Chemokines in pathology and medicine. J Intern Med 2001; 250:91–104.

    PubMed  CAS  Google Scholar 

  84. Mackay CR. Chemokines: immunology’s high impact factors. Nat Immunol 2001; 2:95–101.

    PubMed  CAS  Google Scholar 

  85. Murphy PM. International Union of Pharmacology. Update on chemokine receptor nomenclature. Pharmacol Rev 2002; 54:227–229.

    PubMed  CAS  Google Scholar 

  86. Melchjorsen J, Sørensen LN, Paludan SR. Expression and function of chemokines during viral infections: from molecular mechanisms to in vivo function. J Leukoc Biol 2003; 74:331–343.

    PubMed  CAS  Google Scholar 

  87. Murphy PM. Viral exploitation and subversion of the immune system through chemokine mimicry. Nat Immunol 2001; 2:116–122.

    PubMed  CAS  Google Scholar 

  88. Comerford I, Nibbs RJ. Post-translational control of chemokines: a role for decoy receptors? Immunol Lett 2005; 96:163–174.

    PubMed  CAS  Google Scholar 

  89. Saederup N, Mocarski ES Jr. Fatal attraction: cytomegalovirus-encoded chemokine homologs. Curr Top Microbiol Immunol 2002; 269:235–256.

    PubMed  CAS  Google Scholar 

  90. Penfold ME, Dairaghi DJ, Duke GM et al. Cytomegalovirus encodes a potent alpha chemokine. Proc Natl Acad Sci USA 1999; 96:9839–9844.

    PubMed  CAS  Google Scholar 

  91. Hahn G, Revello MG, Patrone M et al. Human cytomegalovirus UL131-128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J Virol 2004; 78:10023–10033.

    PubMed  CAS  Google Scholar 

  92. Arav-Boger R, Foster CB, Zong JC et al. Human cytomegalovirus-encoded alpha-chemokines exhibit high sequence variability in congenitally infected newborns. J Infect Dis 2006; 193:788–791.

    PubMed  CAS  Google Scholar 

  93. Miller-Kittrell M, Sai J, Penfold M et al. Functional characterization of chimpanzee cytomegalovirus chemokine, vCXCL-1(CCMV). Virology 2007; 364:454–465.

    PubMed  CAS  Google Scholar 

  94. Alcendor DJ, Zong J, Dolan A et al. Patterns of divergence in the vCXCL and vGPCR gene clusters in primate cytomegalovirus genomes. Virology 2009; 395:21–32.

    PubMed  CAS  Google Scholar 

  95. Akter P, Cunningham C, McSharry BP et al. Two novel spliced genes in human cytomegalovirus. J Gen Virol 2003; 84:1117–1122.

    PubMed  CAS  Google Scholar 

  96. Gerna G, Percivalle E, Lilleri D et al. Dendritic-cell infection by human cytomegalovirus is restricted to strains carrying functional UL131-128 genes and mediates efficient viral antigen presentation to CD8 T-cells. J Gen Virol 2005; 86:275–284.

    PubMed  CAS  Google Scholar 

  97. Baldanti F, Paolucci S, Campanini G et al. Human cytomegalovirus UL131A, UL130 and UL128 genes are highly conserved among field isolates. Arch Virol 2006; 151:1225–1233.

    PubMed  CAS  Google Scholar 

  98. Sun ZR, Ji YH, Ruan Q et al. Structure characterization of human cytomegalovirus UL131A, UL130 and UL128 genes in clinical strains in China. Genet Mol Res 2009; 8:1191–1201.

    PubMed  CAS  Google Scholar 

  99. Fleming P, Davis-Poynter N, Degli-Esposti M et al. The murine cytomegalovirus chemokine homolog, m131/129, is a determinant of viral pathogenicity. J Virol 1999; 73:6800–6809.

    PubMed  CAS  Google Scholar 

  100. Saederup N, Lin YC, Dairaghi DJ et al. Cytomegalovirus-encoded beta chemokine promotes monocyte-associated viremia in the host. Proc Natl Acad Sci USA 1999; 96:10881–10886.

    PubMed  CAS  Google Scholar 

  101. Saederup N, Aguirre SA, Sparer TE et al. Murine cytomegalovirus CC chemokine homolog MCK-2 (m131-129) is a determinant of dissemination that increases inflammation at initial sites of infection. J Virol 2001; 75:9966–9976.

    PubMed  CAS  Google Scholar 

  102. Haggerty SM, Schleiss MR. A novel CC-chemokine homolog encoded by guinea pig cytomegalovirus. Virus Genes 2002; 25:271–279.

    PubMed  CAS  Google Scholar 

  103. Arvanitakis L, Geras-Raaka E, Varma A et al. Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 1997; 385:347–350.

    PubMed  CAS  Google Scholar 

  104. Casarosa P, Bakker RA, Verzijl D et al. Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J Biol Chem 2001; 276:1133–1137.

    PubMed  CAS  Google Scholar 

  105. Waldhoer M, Kledal TN, Farrell H et al. Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J Virol 2002; 76:8161–8168.

    PubMed  CAS  Google Scholar 

  106. Casarosa P, Gruijthuijsen YK, Michel D et al. Constitutive signaling of the human cytomegalovirus-encoded receptor UL33 differs from that of its rat cytomegalovirus homolog R33 by promiscuous activation of G proteins of the Gq, Gi and Gs classes. J Biol Chem 2003; 278:50010–50023.

    PubMed  CAS  Google Scholar 

  107. Gao JL, Murphy PM. Human cytomegalovirus open reading frame US28 encodes a functional beta chemokine receptor. J Biol Chem 1994; 269:28539–28542.

    PubMed  CAS  Google Scholar 

  108. Kuhn DE, Beall CJ, Kolattukudy PE. The cytomegalovirus US28 protein binds multiple CC chemokines with high affinity. Biochem Biophys Res Commun 1995; 211:325–330.

    PubMed  CAS  Google Scholar 

  109. Kledal TN, Rosenkilde MM, Schwartz TW. Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. F EBS Lett 1998; 441:209–214.

    PubMed  CAS  Google Scholar 

  110. Casarosa P, Waldhoer M, LiWang PJ et al. CC and CX3C chemokines differentially interact with the N terminus of the human cytomegalovirus-encoded US28 receptor. J Biol Chem 2005; 280:3275–3285.

    PubMed  CAS  Google Scholar 

  111. Bodaghi B, Jones TR, Zipeto D et al. Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 1998; 188:855–866.

    PubMed  CAS  Google Scholar 

  112. Fraile-Ramos A, Kledal TN, Pelchen-Matthews A et al. The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Mol Biol Cell 2001; 12:1737–1749.

    PubMed  CAS  Google Scholar 

  113. Streblow DN, Soderberg-Naucler C, Vieira J et al. The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 1999; 99:511–520.

    PubMed  CAS  Google Scholar 

  114. Rosenkilde MM, Smit MJ, Waldhoer M. Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors. Br J Pharmacol 2008; 153Suppl 1:S154–S166.

    PubMed  CAS  Google Scholar 

  115. Maussang D, Verzijl D, van Walsum M et al. Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Natl Acad Sci USA 2006; 103:13068–13073.

    PubMed  CAS  Google Scholar 

  116. Pleskoff O, Tréboute C, Brelot A et al. Identification of a chemokine receptor encoded by human cytomegalovirus as a cofactor for HIV-1 entry. Science 1997; 276:1874–1878.

    PubMed  CAS  Google Scholar 

  117. Pleskoff O, Tréboute C, Alizon M. The cytomegalovirus-encoded chemokine receptor US28 can enhance cell-cell fusion mediated by different viral proteins. J Virol 1998; 72:6389–6397.

    PubMed  CAS  Google Scholar 

  118. Fraile-Ramos A, Pelchen-Matthews A, Kledal TN et al. Localization of HCMV UL33 and US27 in endocytic compartments and viral membranes. Traffic 2002; 3:218–232.

    PubMed  CAS  Google Scholar 

  119. Waldhoer M, Kledal TN, Farrell H et al. Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J Virol 2002; 76:8161–8168.

    PubMed  CAS  Google Scholar 

  120. Margulies BJ, Gibson W. The chemokine receptor homologue encoded by US27 of human cytomegalovirus is heavily glycosylated and is present in infected human foreskin fibroblasts and enveloped virus particles. Virus Res 2007; 123:57–71.

    PubMed  CAS  Google Scholar 

  121. Vischer HF, Leurs R, Smit MJ. HCMV-encoded G-protein-coupled receptors as constitutively active modulators of cellular signaling networks. Trends Pharmacol Sci 2006; 27:56–63.

    PubMed  CAS  Google Scholar 

  122. Mellado M, Vila-Coro AJ, Martínez C et al. Receptor dimerization: a key step in chemokine signaling. Cell Mol Biol (Noisy-le-grand) 2001; 47:575–582.

    CAS  Google Scholar 

  123. Margulies BJ, Browne H, Gibson W. Identification of the human cytomegalovirus G protein-coupled receptor homologue encoded by UL33 in infected cells and enveloped virus particles. Virology 1996; 225:111–125.

    PubMed  CAS  Google Scholar 

  124. Beisser PS, Lavreysen H, Bruggeman CA et al. Chemokines and chemokine receptors encoded by cytomegaloviruses. Curr Top Microbiol Immunol 2008; 325:221–242.

    PubMed  CAS  Google Scholar 

  125. Davis-Poynter NJ, Lynch DM, Vally H et al. Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J Virol 1997; 71:1521–1529.

    PubMed  CAS  Google Scholar 

  126. Beisser PS, Vink C, Van Dam JG et al. The R33 G protein-coupled receptor gene of rat cytomegalovirus plays an essential role in the pathogenesis of viral infection. J Virol 1998; 72:2352–2363.

    PubMed  CAS  Google Scholar 

  127. Case R, Sharp E, Benned-Jensen T et al. Functional analysis of the murine cytomegalovirus chemokine receptor homologue M33: ablation of constitutive signaling is associated with an attenuated phenotype in vivo. J Virol 2008; 82:1884–1898.

    PubMed  CAS  Google Scholar 

  128. Melnychuk RM, Smith P, Kreklywich CN et al. Mouse cytomegalovirus M33 is necessary and sufficient in virus-induced vascular smooth muscle cell migration. J Virol 2005; 79:10788–10795.

    PubMed  CAS  Google Scholar 

  129. Beisser PS, Grauls G, Bruggeman CA et al. Deletion of the R78 G protein-coupled receptor gene from rat cytomegalovirus results in an attenuated, syncytium-inducing mutant strain. J Virol 1999; 73:7218–7230.

    PubMed  CAS  Google Scholar 

  130. Oliveira SA, Shenk TE. Murine cytomegalovirus M78 protein, a G protein-coupled receptor homologue, is a constituent of the virion and facilitates accumulation of immediate-early viral mRNA. Proc Natl Acad Sci USA 2001; 98:3237–3242.

    PubMed  CAS  Google Scholar 

  131. Milne RS, Mattick C, Nicholson L et al. RANTES binding and down-regulation by a novel human herpesvirus-6 beta chemokine receptor. J Immunol 2000; 164:2396–2404.

    PubMed  CAS  Google Scholar 

  132. Tadagaki K, Nakano K, Yamanishi K. Human herpesvirus 7 open reading frames U12 and U51 encode functional beta-chemokine receptors. J Virol 2005; 79:7068–7076.

    PubMed  CAS  Google Scholar 

  133. Fitzsimons CP, Gompels UA, Verzijl D et al. Chemokine-directed trafficking of receptor stimulus to different g proteins: selective inducible and constitutive signaling by human herpesvirus 6-encoded chemokine receptor U51. Mol Pharmacol 2006; 69:888–898.

    PubMed  CAS  Google Scholar 

  134. Ravetch JV, Kinet JP. Fc receptors. Annu Rev Immunol 1991; 9:457–492.

    PubMed  CAS  Google Scholar 

  135. Frey J, Einsfelder B. Induction of surface IgG receptors in cytomegalovirus-infected human fibroblasts. Eur J Biochem 1984; 138:213–216.

    PubMed  CAS  Google Scholar 

  136. Stannard LM, Hardie DR. An Fc receptor for human immunoglobulin G is located within the tegument of human cytomegalovirus. J Virol 1991; 65:3411–3415.

    PubMed  CAS  Google Scholar 

  137. Lilley BN, Ploegh HL, Tirabassi RS. Human cytomegalovirus open reading frame TRL11/IRL11 encodes an immunoglobulin G Fc-binding protein. J Virol 2001; 75:11218–11221.

    PubMed  CAS  Google Scholar 

  138. Atalay R, Zimmermann A, Wagner M et al. Identification and expression of human cytomegalovirus transcription units coding for two distinct Fcgamma receptor homologs. J Virol 2002; 76:8596–8608.

    PubMed  CAS  Google Scholar 

  139. Thäle R, Lucin P, Schneider K et al. Identification and expression of a murine cytomegalovirus early gene coding for an Fc receptor. J Virol 1994; 68:7757–7765.

    PubMed  Google Scholar 

  140. Crnković-Mertens I, Messerle M, Milotić I et al. Virus attenuation after deletion of the cytomegalovirus Fc receptor gene is not due to antibody control. J Virol 1998; 72:1377–1382.

    PubMed  Google Scholar 

  141. Lenac T, Budt M, Arapovic J et al. The herpesviral Fc receptor fcr-1 down-regulates the NKG2D ligands MULT-1 and H60. J Exp Med 2006; 203:1843–1850.

    PubMed  CAS  Google Scholar 

  142. Arapović J, Lenac Rovis T et al. Promiscuity of MCMV immunoevasin of NKG2D: m138/fcr-1 down-modulates RAE-1epsilon in addition to MULT-1 and H60. Mol Immunol 2009; 47:114–122.

    PubMed  Google Scholar 

  143. Mintern JD, Klemm EJ, Wagner M et al. Viral interference with B7-1 costimulation: a new role for murine cytomegalovirus fc receptor-1. J Immunol 2006; 177:8422–8431.

    PubMed  CAS  Google Scholar 

  144. Fujinami RS, Oldstone MB. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985; 230:1043–1045.

    PubMed  CAS  Google Scholar 

  145. Fujinami RS, von Herrath MG, Christen U et al. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev 2006; 19:80–94.

    PubMed  CAS  Google Scholar 

  146. Münz C, Lünemann JD, Getts MT et al. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat Rev Immunol 2009; 9:246–258.

    PubMed  Google Scholar 

  147. Lunardi C, Bason C, Navone R et al. Systemic sclerosis immunoglobulin G autoantibodies bind the human cytomegalovirus late protein UL94 and induce apoptosis in human endothelial cells. Nat Med 2000; 6:1183–1186.

    PubMed  CAS  Google Scholar 

  148. Lunardi C, Dolcino M, Peterlana D et al. Antibodies against human cytomegalovirus in the pathogenesis of systemic sclerosis: a gene array approach. PLoS Med 2006; 3:e2.

    PubMed  Google Scholar 

  149. Bason C, Corrocher R, Lunardi C et al. Interaction of antibodies against cytomegalovirus with heat-shock protein 60 in pathogenesis of atherosclerosis. Lancet 2003; 362:1971–1977.

    PubMed  CAS  Google Scholar 

  150. von Herrath MG, Fujinami RS, Whitton JL. Microorganisms and autoimmunity: making the barren field fertile? Nat Rev Microbiol 2003; 1:151–157.

    Google Scholar 

  151. Novotny J, Rigoutsos I, Coleman D et al. In silico structural and functional analysis of the human cytomegalovirus (HHV5) genome. J Mol Biol 2001; 310:1151–1166.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Engel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Engel, P., Angulo, A. (2012). Viral Immunomodulatory Proteins: Usurping Host Genes as a Survival Strategy. In: López-Larrea, C. (eds) Self and Nonself. Advances in Experimental Medicine and Biology, vol 738. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1680-7_15

Download citation

Publish with us

Policies and ethics