Skip to main content

Noninvasive Coronary Artery Imaging with CT and MRI

  • Chapter
  • First Online:
Coronary Heart Disease

Abstract

Cardiac CT angiography (CCTA) for coronary artery evaluation is now a clinically useful modality as a result of concurrent developments in computer speed and memory, and powerful multidetector CT scanner hardware with post-processing software. For many years, invasive coronary angiography was the gold standard for evaluating coronary artery disease since it provides a clear view of the coronary artery. But, it comes with a small risk of associated morbidity. Noninvasive coronary artery evaluation previously relied on phenomena secondary to coronary stenosis during physiologic stress (electrocardiogram, wall motion, and perfusion changes), but multiple problems with test performance still limit sensitivity and specificity. CCTA of the coronary artery lumen and wall permits noninvasive visualization, prognosis assessment, and an ability to determine the potential source of symptoms. In this chapter, we review CCTA techniques, data supporting its clinical application, clinical uses, associated radiation exposure, and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pannu HK, Alvarez W, Fishman EK. B-blockers for cardiac CT: a primer for the radiologist. Am J Roent. 2006;186:5341.

    Google Scholar 

  2. Nikolau K, Flohr T, Knez A, et al. Advances in cardiac CT imaging: 64-slice scanner. Intl J of Cardiovasc Imag. 2004;20:535–40.

    Article  Google Scholar 

  3. Hoffman U, Ferenick M, Cury R, et al. Coronary CT Angiography J Nucl Med. 2006;47:797–806.

    Google Scholar 

  4. Hoffman U, Bamberg F, Chae CU, et al. Coronary computed tomography angiography for early triage of patients with acute chest pain. J Am Coll Cardiol. 2009;53:1642–50.

    Article  Google Scholar 

  5. Goldstein JA, Gallagher MJ, O’Neill WW, Ross MA, O’Neil BJ, Raff GL. A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol. 2007;49:863–71.

    Article  PubMed  Google Scholar 

  6. Raff G, Chinnaiyan KM, Berman D, et al. Late-breaking clinical trial/science abstracts from the aha scientific sessions 2009. Circulation. 2009;120:2160.

    Google Scholar 

  7. Raff G, Gallagher M, O’Neill W, et al. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol. 2005;46(3):552–7.

    Article  PubMed  Google Scholar 

  8. Cademartiri F, Runza G, Mollet NR, et al. Impact of intravascular enhancement, heart rate, and calcium score on diagnostic accuracy in multislice computed tomography coronary angiography. Radiol Med. 2005;110:42–51.

    PubMed  Google Scholar 

  9. Hausleiter J, Meyer T, Hadamitzky M, et al. Non-invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: the Coronary Angiography by Computed Tomography with the Use of a Submillimeter resolution (CACTUS) trial. Eur Heart J. 2007;28(24):3034–41.

    Article  PubMed  Google Scholar 

  10. Cheng V, Gutstein A, Wolak A, et al. Moving beyond binary grading of coronary arterial stenoses on coronary computed tomographic angiography. Insights for the imager and referring clinician J Am Coll Cardiol Img. 2008;1:460–71.

    Google Scholar 

  11. Miller J, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324–36.

    Article  PubMed  CAS  Google Scholar 

  12. Meijboom WB, van Miegham CAG, Mollet NR, et al. 64-Slice computed tomography angiography in patients with high, intermediate, or low pretest probability of significant coronary artery disease. J Am Coll Cardiol. 2007;50:1469–75.

    Article  PubMed  Google Scholar 

  13. Budoff MJ, Copal A, Gul KM, et al. Prevalence of obstructive coronary artery disease in an outpatient cardiac CT angiography environment. Int J Cardiol. 2008;129:32–6.

    Article  PubMed  Google Scholar 

  14. Min JK, Shaw LJ. Noninvasive diagnostic and prognostic assessment of individuals with suspected coronary artery disease: coronary computed tomographic perspective. Circ Cardiovasc Imaging. 2008;1:270–81.

    Article  PubMed  Google Scholar 

  15. Budoff M, Dowe D, Jollis J, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. J Am Coll Cardiol. 2008;52:1724–32.

    Article  PubMed  Google Scholar 

  16. Meijboom W, Meijs M, Schuijf J, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography. J Am Coll Cardiol. 2008;52:2135–44.

    Article  PubMed  Google Scholar 

  17. Detrano R, Guerci AD, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358:1336–45.

    Article  PubMed  CAS  Google Scholar 

  18. Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA. 2004;291:210–5.

    Article  PubMed  CAS  Google Scholar 

  19. Min JK, Shaw LJ, Devereux RB, et al. Prognostic value of multi-detector coronary computed tomography for prediction of all-cause mortality. J Am Coll Cardiol. 2007;50:1161–70.

    Article  PubMed  Google Scholar 

  20. Ostrom MP, Gopal A, Ahmadi N, et al. Mortality incidence and the severity of coronary atherosclerosis assessed by computed tomography angiography. J Am Coll Cardiol. 2008;52:1335–43.

    Article  PubMed  Google Scholar 

  21. Hadamitzky M, Freimuth B, Meyer T, et al. Prognostic value of coronary computed tomographic angiography for prediction of cardiac events in patients with suspected coronary artery disease. JACC Img. 2009;2:404–11.

    Article  Google Scholar 

  22. van Werkhoven JM, Schuijf JD, Gaemperli O, et al. Prognostic value of multi-slice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol. 2009;53:623–32.

    Article  PubMed  Google Scholar 

  23. Hendel RC, Patel MR, Kramer CM, et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging. J Am Coll Cardiol. 2006;48(7):1475–97.

    Article  PubMed  Google Scholar 

  24. Danciu SC, Herrera CJ, Stecy PJ, Carell E, Saltiel F, Hines JL. Usefulness of multislice computed tomographic coronary angiography to identify patients with abnormal myocardial perfusion stress in whom diagnostic catheterization may be safely avoided. Am J Cardiol. 2007;100:1605–8.

    Article  PubMed  Google Scholar 

  25. Rubinshtein R, Halon DA, Gaspar T, et al. Impact of 64-Slice Cardiac Computed Tomography on Clinical Outcomes. Am J Cardiol. 2007;99:925–9.

    Article  PubMed  Google Scholar 

  26. Menon M, Lesser JR, Hara H, et al. Multidetector CT coronary angiography for triage to invasive coronary angiography: performance and cost in ambulatory patients with equivocal or suspected inaccurate noninvasive stress tests. Cath Cardiovasc Interv. 2009;73:497–502.

    Article  Google Scholar 

  27. Fazel P, Peterman MA, Schussler JM. Three year outcomes and cost analysis in patients receiving 64-slice computed tomography coronary angiography for chest pain. Am J Cardiol. 2009;104:498–500.

    Article  PubMed  Google Scholar 

  28. Nieman K, Pattynama PMT, Rensing BJ, et al. Evaluation of patients after coronary artery bypass surgery: angiographic assessment of grafts and coronary arteries. Radiology. 2003;229:749–56.

    Article  PubMed  Google Scholar 

  29. Pache G, Saueressig U, Frydrychowicz A, et al. Initial Experience with 64-slice cardiac CT: non-invasive visualization of coronary artery bypass grafts. Eur Heart J. 2006;27(8):976–80.

    Article  PubMed  Google Scholar 

  30. Bettencourt N, Roche J, Carvalho M, et al. Multislice computed tomography in the exclusion of coronary artery disease in patients with presurgical valve disease. Circ Cardiovasc Imaging. 2009;2:306–13.

    Article  PubMed  Google Scholar 

  31. Cademartiri F, Schuijf JD, Pugliesi F, et al. Usefulness of 64-slice computed tomography coronary angiography to assess in-stent restenosis. J Am Coll Cardiol. 2007;49:2204–10.

    Article  PubMed  Google Scholar 

  32. Rixe J, Achenbach S, Ropers D, et al. Assessment of coronary artery stent restenosis by 64-slice multi-detector computed tomography. Eur Heart J. 2006;27:2567–72.

    Article  PubMed  Google Scholar 

  33. Allison MA, Budoff MJ, Nasir K, et al. Ethnic specific risks for atherosclerotic calcification of the thoracic and abdominal aorta. Am J Cardiol. 2009;103:812–7.

    Article  Google Scholar 

  34. Newell MC, Schwartz RS. Utility of CT Coronary Angiography for Planning CTO Intervention. March: Card Interv Today; 2009.

    Google Scholar 

  35. Fuechtner GM, Stolzmann P, Dichtl W, et al. Multislice computed tomography in infective endocarditis. J Am Coll Cardiol. 2009;53:436–44.

    Article  Google Scholar 

  36. Hausleiter J, Meyer T, Hermann F, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009;301(5):500–7.

    Article  PubMed  CAS  Google Scholar 

  37. Raff GL, Chinnaiyan KM, Share DA, et al. Radiation dose from cardiac computed tomography before and after implementation of radiation dose-reduction techniques. JAMA. 2009;301:2340–8.

    Article  PubMed  CAS  Google Scholar 

  38. Motoyama S, Kondo T, Sarai M, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319–26.

    Article  PubMed  Google Scholar 

  39. Motoyama S, Sarai M, Harigaya H, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49–57.

    Article  PubMed  Google Scholar 

  40. Kitagawa K, Lardo AC, Lima JAC, et al. Prospective ECG-Gated 320 Row Detector CT: Implications for CT Angiography and Perfusion Imaging. Intl J Cardiovasc Img. 2009;53:9433–6.

    Google Scholar 

  41. Fayad ZA, Fuster V, Nikolaou K, Becker C. Computed tomography and magnetic resonance imaging for noninvasive coronary angiography and plaque imaging: current and potential future concepts. Circulation. 2002;106:2026–34.

    Article  PubMed  Google Scholar 

  42. Kim WY, Danias PG, Stuber M, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med. 2001;345:1863–9.

    Article  PubMed  CAS  Google Scholar 

  43. Bunce N, Lorenz C, John A, et al. Coronary artery bypass graft patency: assessment with true fast imaging with steady-state precession versus gadolinium-enhanced MR angiography. Radiology. 2003;227:440–6.

    Article  PubMed  Google Scholar 

  44. Jahnke C, Paetsch I, Nehrke K, et al. Rapid and complete coronary arterial tree visualization with magnetic resonance imaging: feasibility and diagnostic performance. Eur Heart J. 2005;26:2313–9.

    Article  PubMed  Google Scholar 

  45. Sommer T, Hackenbroch M, Hofer U, et al. Coronary MR angiography at 3.0 T versus that at 1.5 T: initial results in patients suspected of having coronary artery disease. Radiology. 2005;234:718–25.

    Article  PubMed  Google Scholar 

  46. Wansapura K, Fleck R, Crotty W, et al. Frequency scouting for cardiac imaging with SSFP at 3 Tesla. Pediatr Radiol. 2006;36:1082–5.

    Article  PubMed  Google Scholar 

  47. Yang Q, Li K, Liu X, et al. Contrast-enhanced whole-heart cardiac magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center. J Am Coll Cardiol. 2009;54:69–76.

    Article  PubMed  Google Scholar 

  48. Greil GF, Stuber M, Botner RM, et al. Coronary magnetic resonance angiography in adolescents and young adults with Kawasaki disease. Circulation. 2002;105:908.

    Article  PubMed  Google Scholar 

  49. Marrogeni S, Papadopoulos G, Douskou M, et al. Spiral magnetic resonance angiography with rapid real-time localization. J Am Coll Cardiol. 2004;43(4):649–52.

    Google Scholar 

  50. Bunce N, Lorenz C, Keegan J, et al. Coronary artery anomalies: assessment with free-breathing three- dimensional coronary MR angiography. Radiology. 2003;227:201–8.

    Article  PubMed  Google Scholar 

  51. Fayad ZA, Fuster V, Fallon JT, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation. 2000;102:506–10.

    Article  PubMed  CAS  Google Scholar 

  52. BotnerBenter RM, Stuber M, Kissinger KV, et al. Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation. 2000;102:2582–7.

    Article  Google Scholar 

  53. Ibrahim T, Makowski MR, Jankauskas A, et al. Serial contrast-enhanced cardiac magnetic resonance imaging demonstrates regression of hyperenhancement within the coronary artery wall in patients after acute myocardial infarction. JACC Cardio Img. 2009;2:580–8.

    Article  Google Scholar 

  54. Miao C, Chen S, Macedo R, et al. Positive remodeling of the coronary arteries detected by magnetic resonance imaging in an asymptomatic population. J Am Coll Cardiol. 2009;53:1708–15.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc C. Newell MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Newell, M.C., Schwartz, R.S., Lesser, J.R. (2012). Noninvasive Coronary Artery Imaging with CT and MRI. In: Vlodaver, Z., Wilson, R., Garry, D. (eds) Coronary Heart Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1475-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1475-9_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1474-2

  • Online ISBN: 978-1-4614-1475-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics