Skip to main content

Induced Pluripotential Stem Cells and the Prospects for Cardiac Cell Therapy

  • Chapter
  • First Online:
Coronary Heart Disease

Abstract

This chapter explains the properties of induced pluripotential stem cells (iPS cells) and why they may represent a new dawn for cell therapy of the heart. iPS cells are very similar to embryonic stem cells (ES cells) in that they can grow without limit in tissue culture, and can form all of the cell types in the normal body. But unlike embryonic stem cells, their production requires no eggs or embryos, and can probably be achieved from any individual patient. The technology of making and using iPS cells is based entirely on knowledge gained from growing ES cells. Because ES cells represent the gold standard in performance, it is important to understand their nature and properties as background for understanding and maximizing the potential of iPS cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    Article  PubMed  CAS  Google Scholar 

  2. Martin GR. Isolation of a pluripotent cell-line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem-cells. Proc Natl Acad Sci USA. 1981;78:7634–8.

    Article  PubMed  CAS  Google Scholar 

  3. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  PubMed  CAS  Google Scholar 

  4. Nichols J, Silva J, Roode M, Smith A. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development. 2009;136:3215–22.

    Article  PubMed  CAS  Google Scholar 

  5. Brons IGM, Smithers LE, Trotter MWB, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 2007;448:191–5.

    Article  PubMed  CAS  Google Scholar 

  6. Tesar PJ, Chenoweth JG, Brook FA, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 2007;448:196–9.

    Article  PubMed  CAS  Google Scholar 

  7. Sato N, Sanjuan IM, Heke M, Uchida M, Naef F, Brivanlou AH. Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol. 2003;260:404–13.

    Article  PubMed  CAS  Google Scholar 

  8. Ying Q-L, Wray J, Nichols J, et al. The ground state of embryonic stem cell self-renewal. Nature. 2008;453:519–23.

    Article  PubMed  CAS  Google Scholar 

  9. Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimeras from embryo-derived teratocarcinoma cell-lines. Nature. 1984;309:255–6.

    Article  PubMed  CAS  Google Scholar 

  10. Müller U. Ten years of gene targeting: targeted mouse mutants from vector design to phenotype analysis. Mech Dev. 1999;82:3–21.

    Article  PubMed  Google Scholar 

  11. Daley GQ, Scadden DT. Prospects for stem cell-based therapy. Cell. 2008;132:544–8.

    Article  PubMed  CAS  Google Scholar 

  12. Martin GR, Wiley LM, Damjanov I. The development of cystic embryoid bodies in vitro from clonal teratocarcinoma stem cells. Dev Biol. 1977;61:230–44.

    Article  PubMed  CAS  Google Scholar 

  13. Beddington RS, Robertson EJ. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development. 1989;105:733–7.

    PubMed  CAS  Google Scholar 

  14. ten Berge D, Koole W, Fuerer C, Fish M, Eroglu E, Nusse R. Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell. 2008;3:508–18.

    Article  PubMed  Google Scholar 

  15. Bauwens CL, Peerani R, Niebruegge S, et al. Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells. 2008;26:2300–10.

    Article  PubMed  Google Scholar 

  16. Itskovitz-Eldor J, Schuldiner M, Karsenti D, et al. Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol Med. 2000;6:88–95.

    PubMed  CAS  Google Scholar 

  17. Damjanov I, Solter D. Experimental teratoma. Curr Top Pathol. 1974;59:69–130.

    Article  PubMed  CAS  Google Scholar 

  18. Silva J, Nichols J, Theunissen TW, et al. Nanog is the gateway to the pluripotent ground state. Cell. 2009;138:722–37.

    Article  PubMed  CAS  Google Scholar 

  19. Vallier L, Mendjan S, Brown S, et al. Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development. 2009;136:1339–49.

    Article  PubMed  CAS  Google Scholar 

  20. Bernstein BE, Mikkelsen TS, Xie XH, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125:315–26.

    Article  PubMed  CAS  Google Scholar 

  21. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  PubMed  CAS  Google Scholar 

  22. Lowry WE, Richter L, Yachechko R, et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci. 2008;105:2883–8.

    Article  PubMed  CAS  Google Scholar 

  23. Park I-H, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451:141–6.

    Article  PubMed  CAS  Google Scholar 

  24. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  PubMed  CAS  Google Scholar 

  25. Yu JY, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

    Article  PubMed  CAS  Google Scholar 

  26. Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007;1:55–70.

    Article  PubMed  CAS  Google Scholar 

  27. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313–7.

    Article  PubMed  CAS  Google Scholar 

  28. Aoi T, Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008;321:699–702.

    Article  PubMed  CAS  Google Scholar 

  29. Eminli S, Utikal J, Arnold K, Jaenisch R, Hochedlinger K. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells. 2008;26:2467–74.

    Article  PubMed  CAS  Google Scholar 

  30. Stadtfeld M, Brennand K, Hochedlinger K. Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol. 2008;18:890–4.

    Article  PubMed  CAS  Google Scholar 

  31. Nagy A, Gocza E, Diaz EM, et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development. 1990;110:815–21.

    PubMed  CAS  Google Scholar 

  32. Boland MJ, Hazen JL, Nazor KL, et al. Adult mice generated from induced pluripotent stem cells. Nature. 2009;461:91–4.

    Article  PubMed  CAS  Google Scholar 

  33. Zhao XY, Li W, Lv Z, et al. iPS cells produce viable mice through tetraploid complementation. Nature. 2009;461:86–90.

    Article  PubMed  CAS  Google Scholar 

  34. Hall VJ, Stojkovic P, Stojkovic M. Using therapeutic cloning to fight human disease: a conundrum or reality? Stem Cells. 2006;24:1628–37.

    Article  PubMed  Google Scholar 

  35. Byrne JA, Pedersen DA, Clepper LL, et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature. 2007;450:497–502.

    Article  PubMed  CAS  Google Scholar 

  36. Dimos JT, Rodolfa KT, Niakan KK, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008;321:1218–21.

    Article  PubMed  CAS  Google Scholar 

  37. Ebert AD, Yu J, Rose FF, et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009;457:277–80.

    Article  PubMed  CAS  Google Scholar 

  38. Maehr R, Chen S, Snitow M, et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci. 2009;106:15768–73.

    Article  PubMed  CAS  Google Scholar 

  39. Park IH, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell. 2008;134:877–86.

    Article  PubMed  CAS  Google Scholar 

  40. Raya A, Rodriguez-Piza I, Guenechea G, et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature. 2009;460:53–9.

    Article  PubMed  CAS  Google Scholar 

  41. Soldner F, Hockemeyer D, Beard C, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell. 2009;136:964–77.

    Article  PubMed  CAS  Google Scholar 

  42. Yamanaka S. Elite and stochastic models for induced pluripotent stem cell generation. Nature. 2009;460:49–52.

    Article  PubMed  CAS  Google Scholar 

  43. Hanna J, Saha K, Pando B, et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature. 2009;462:595–601.

    Article  PubMed  CAS  Google Scholar 

  44. Brambrink T, Foreman R, Welstead GG, et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell. 2008;2:151–9.

    Article  PubMed  CAS  Google Scholar 

  45. Huangfu DW, Maehr R, Guo WJ, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnol. 2008;26:795–7.

    Article  CAS  Google Scholar 

  46. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 2009;458:771–5.

    Article  PubMed  CAS  Google Scholar 

  47. Woltjen K, Michael IP, Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009;458:766–70.

    Article  PubMed  CAS  Google Scholar 

  48. Okita K, Nakagawa M, Hong HJ, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322:949–53.

    Article  PubMed  CAS  Google Scholar 

  49. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science. 2008;322:945–9.

    Article  PubMed  CAS  Google Scholar 

  50. Kim D, Kim C-H, Moon J-I, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009;4:472–6.

    Article  PubMed  CAS  Google Scholar 

  51. Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009;4(5):381–4.

    Article  PubMed  CAS  Google Scholar 

  52. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B. 2009;85:348–62.

    Article  CAS  Google Scholar 

  53. Darabi R, Gehlbach K, Bachoo RM, et al. Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat Med. 2009;14:134–43.

    Article  Google Scholar 

  54. Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 2005;6:826–37.

    Article  PubMed  CAS  Google Scholar 

  55. Garry DJ, Olson EN. A common progenitor at the heart of development. Cell. 2006;127:1101–4.

    Article  PubMed  CAS  Google Scholar 

  56. Harvey RP. Patterning the vertebrate heart. Nat Rev Genet. 2002;3:544–56.

    Article  PubMed  CAS  Google Scholar 

  57. Moretti A, Caron L, Nakano A, et al. Multipotent embryonic Isl1(+) progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006;127:1151–65.

    Article  PubMed  CAS  Google Scholar 

  58. Ferdous A, Caprioli A, Iacovino M, et al. Nkx2-5 transactivates the Ets-related protein 71 gene and specifies an endothelial/endocardial fate in the developing embryo. Proc Natl Acad Sci USA. 2009;106:814–9.

    Article  PubMed  CAS  Google Scholar 

  59. Nussbaum J, Minami E, Laflamme MA, et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J. 2007;21:1345–57.

    Article  PubMed  CAS  Google Scholar 

  60. He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ. Human embryonic stem cells develop into multiple types of cardiac myocytes – action potential characterization. Circulation Res. 2003;93:32–9.

    Article  PubMed  CAS  Google Scholar 

  61. Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108:407–14.

    PubMed  CAS  Google Scholar 

  62. Passier R, Oostwaard DWV, Snapper J, et al. Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells. 2005;23:772–80.

    Article  PubMed  CAS  Google Scholar 

  63. Behfar A, Perez-Terzic C, Faustino RS, et al. Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J Exp Med. 2007;204:405–20.

    Article  PubMed  CAS  Google Scholar 

  64. Graichen R, Xu XQ, Braam SR, et al. Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation. 2008;76:357–70.

    Article  PubMed  CAS  Google Scholar 

  65. Huber I, Itzhaki I, Caspi O, et al. Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. Faseb J. 2007;21:2551–63.

    Article  PubMed  CAS  Google Scholar 

  66. Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25:1015–24.

    Article  PubMed  CAS  Google Scholar 

  67. Mauritz C, Schwanke K, Reppel M, et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation. 2008;118:507–17.

    Article  PubMed  Google Scholar 

  68. Narazaki G, Uosaki H, Teranishi M, et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation. 2008;118:498–506.

    Article  PubMed  Google Scholar 

  69. Tanaka T, Tohyama S, Murata M, et al. In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes. Biochem Biophys Res Commun. 2009;385:497–502.

    Article  PubMed  CAS  Google Scholar 

  70. Zhang JH, Wilson GF, Soerens AG, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res. 2009;104:E30–41.

    Article  PubMed  CAS  Google Scholar 

  71. Zwi L, Caspi O, Arbel G, et al. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation. 2009;120:1513–23.

    Article  PubMed  CAS  Google Scholar 

  72. Bittner RE, Schofer C, Weipoltshammer K, et al. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol (Berl). 1999;199:391–6.

    Article  CAS  Google Scholar 

  73. Jackson KA, Majka SM, Wang HG, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001;107:1395–402.

    Article  PubMed  CAS  Google Scholar 

  74. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–5.

    Article  PubMed  CAS  Google Scholar 

  75. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell. 2004;116:639–48.

    Article  PubMed  CAS  Google Scholar 

  76. Passier R, van Laake LW, Mummery CL. Stem-cell-based therapy and lessons from the heart. Nature. 2008;453:322–9.

    Article  PubMed  CAS  Google Scholar 

  77. Rosenzweig A. Cardiac cell therapy – mixed results from mixed cells. New Engl J Med. 2006;355:1274–7.

    Article  PubMed  CAS  Google Scholar 

  78. Segers VFM, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451:937–42.

    Article  PubMed  CAS  Google Scholar 

  79. Zhang G, Wang XH, Wang ZL, Zhang JY, Suggs LA. PEGylated fibrin patch for mesenchymal stem cell delivery. Tissue Eng. 2006;12:9–19.

    Article  PubMed  CAS  Google Scholar 

  80. Ott HC, Matthiesen TS, Goh S-K, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nature Med. 2008;14:213–21.

    Article  PubMed  CAS  Google Scholar 

  81. Chidgey AP, Layton D, Trounson A, Boyd RL. Tolerance strategies for stem-cell-based therapies. Nature. 2008;453:330–7.

    Article  PubMed  CAS  Google Scholar 

  82. Kaufman DS, Thomson JA. Human ES cells – haematopoiesis and transplantation strategies. J Anat. 2002;200:243–8.

    Article  PubMed  CAS  Google Scholar 

  83. Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366:2019–25.

    Article  PubMed  Google Scholar 

  84. Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007;318:1920–3.

    Article  PubMed  CAS  Google Scholar 

  85. Kyba M, Perlingeiro RCR, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell. 2002;109:29–37.

    Article  PubMed  CAS  Google Scholar 

  86. Slack JMW. Essential developmental biology. Oxford: Blackwell Science; 2005. p. 125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. W. Slack MA, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Slack, J.M.W., Dutton, J.R. (2012). Induced Pluripotential Stem Cells and the Prospects for Cardiac Cell Therapy. In: Vlodaver, Z., Wilson, R., Garry, D. (eds) Coronary Heart Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1475-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1475-9_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1474-2

  • Online ISBN: 978-1-4614-1475-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics