Skip to main content

20 Years of the Dynamics of Memory: The Long and Winding Road Linking Cellular Mechanisms to Behavior

  • Chapter
  • First Online:
20 Years of Computational Neuroscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 9))

  • 2357 Accesses

Abstract

The first Computational Neuroscience meetings in the 1990s fostered an increasing focus on biologically realistic modeling of neurons to understand the function of neural circuits. This chapter reviews some of the developments over the past 20 years, relating papers presented at the early meetings to subsequent developments. The review addresses developments in research on associative memory function, hippocampal memory function, the functional role of theta rhythm oscillations, and the discovery and modeling of grid cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LF, Blum KI (1996) Functional significance of long-term potentiation for sequence learning and prediction. Cereb Cortex 6(3):406–416

    PubMed  CAS  Google Scholar 

  • Amit DJ (1988) Modeling brain function: the world of attractor neural networks. Cambridge Univ Press, Cambridge, UK

    Google Scholar 

  • Amit DJ, Treves A (1989) Associative memory neural networks with low temporal spiking rates. Proc Natl Acad Sci USA 86:7671–7673

    Google Scholar 

  • Amit DJ, Evans MR, Abeles M (1990) Attractor neural networks with biological probe records. Network 1:381–405

    Google Scholar 

  • Anderson JA (1972) A simple neural network generating an interactive memory. Math Biosci 14:197–220

    Google Scholar 

  • Atri A, Sherman S, Norman KA, Kirchhoff BA, Nicolas MM, Greicius MD, Cramer SC, Breiter HC, Hasselmo ME, Stern CE (2004) Blockade of central cholinergic receptors impairs new learning and increases proactive interference in a word paired-associate memory task. Behav Neurosci 118(1):223–236

    PubMed  CAS  Google Scholar 

  • Barkai E, Hasselmo ME (1994) Modulation of the input/output function of rat piriform cortex pyramidal cells. J Neurophysiol 72(2):644–658

    PubMed  CAS  Google Scholar 

  • Barkai E, Bergman RE, Horwitz G, Hasselmo ME (1994) Modulation of associative memory function in a biophysical simulation of rat piriform cortex. J Neurophysiol 72(2):659–677

    PubMed  CAS  Google Scholar 

  • Barnes CA, McNaughton BL, Mizumori SJ, Leonard BW, Lin LH (1990) Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. Prog Brain Res 83:287–300

    PubMed  CAS  Google Scholar 

  • Barry C, Hayman R, Burgess N, Jeffery KJ (2007) Experience-dependent rescaling of entorhinal grids. Nat Neurosci 10(6):682–684

    PubMed  CAS  Google Scholar 

  • Bergman RE, Vanier M, Horwitz G, Bower JM, Hasselmo ME (1993) Cholinergic modulation of associative memory function in a realistic computational model of piriform cortex. In: Eeckman F, Bower JM (eds) Computation and neural systems. Kluwer Academic, Norwell, MA, pp 273–280

    Google Scholar 

  • Blum KI, Abbott LF (1996) A model of spatial map formation in the hippocampus of the rat. Neural Comput 8(1):85–93

    PubMed  CAS  Google Scholar 

  • Boehlen A, Heinemann U, Erchova I (2010) The range of intrinsic frequencies represented by medial entorhinal cortex stellate cells extends with age. J Neurosci 30(13):4585–4589

    PubMed  CAS  Google Scholar 

  • Bose A, Recce M (2001) Phase precession and phase-locking of hippocampal pyramidal cells. Hippocampus 11(3):204–215

    PubMed  CAS  Google Scholar 

  • Bose A, Booth V, Recce M (2000) A temporal mechanism for generating the phase precession of hippocampal place cells. J Comput Neurosci 9(1):5–30

    PubMed  CAS  Google Scholar 

  • Bower JM (1990) Reverse engineering the nervous system: an anatomical, physiological and computer based approach. In: Zornetzer S, Davis J, Lau C (eds) An introduction to neural and electronic networks. Academic, San Diego, pp 3–24

    Google Scholar 

  • Bower JM, Beeman D (1995) The book of GENESIS: exploring realistic neural models with the GEneral NEural SImulation System. Springer, New York

    Google Scholar 

  • Bower JM, Haberly LB (1986) Facilitating and nonfacilitating synapses on pyramidal cells: a correlation between physiology and morphology. Proc Natl Acad Sci USA 83:1115–1119

    PubMed  CAS  Google Scholar 

  • Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K, Hasselmo ME (2011) Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science 332:595–599

    Google Scholar 

  • Brun VH, Solstad T, Kjelstrup KB, Fyhn M, Witter MP, Moser EI, Moser MB (2008) Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex. Hippocampus 18(12):1200–1212

    PubMed  Google Scholar 

  • Burak Y, Fiete IR (2009) Accurate path integration in continuous attractor network models of grid cells. PLoS Comput Biol 5(2):e1000291

    PubMed  Google Scholar 

  • Burgess N, Barry C, Jeffery KJ, O’Keefe J (2005) A grid and place cell model of path integration utilizing phase precession versus theta. In: Computational cognitive neuroscience meeting, Washington, DC

    Google Scholar 

  • Burgess N, Barry C, O’Keefe J (2007) An oscillatory interference model of grid cell firing. Hippocampus 17(9):801–812

    PubMed  Google Scholar 

  • Burgess N, O’Keefe J, Recce M (1994). Toward a mechanism for navigation by the rat hippocampus. In: Eeckman F, Bower JM (eds) Computation and neural systems. Kluwer, Norwell, MA, pp 257–262

    PubMed  Google Scholar 

  • Chen S, Wang J, Siegelbaum SA (2001) Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide. J Gen Physiol 117(5):491–504

    PubMed  CAS  Google Scholar 

  • Cohen MA, Grossberg S (1983) Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans Syst Man Cybern 13:815–826

    Google Scholar 

  • De Rosa E, Hasselmo ME (2000) Muscarinic cholinergic neuromodulation reduces proactive interference between stored odor memories during associative learning in rats. Behav Neurosci 114:32–41

    PubMed  Google Scholar 

  • De Rosa E, Hasselmo ME, Baxter MG (2001) Contribution of the cholinergic basal forebrain to proactive interference from stored odor memories during associative learning in rats. Behav Neurosci 115(2):314–327

    PubMed  Google Scholar 

  • de Sevilla DF, Cabezas C, de Prada AN, Sanchez-Jimenez A, Buno W (2002) Selective muscarinic regulation of functional glutamatergic Schaffer collateral synapses in rat CA1 pyramidal neurons. J Physiol 545(Pt 1):51–63

    Google Scholar 

  • Egorov AV, Hamam BN, Fransen E, Hasselmo ME, Alonso AA (2002) Graded persistent activity in entorhinal cortex neurons. Nature 420(6912):173–178

    PubMed  CAS  Google Scholar 

  • Fransén E, Alonso AA, Dickson CT, Magistretti J, Hasselmo ME (2004) Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons. Hippocampus 14(3):368–384

    PubMed  Google Scholar 

  • Fransén E, Tahvildari B, Egorov AV, Hasselmo ME, Alonso AA (2006) Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron 49(5):735–746

    PubMed  Google Scholar 

  • Fuhs MC, Touretzky DS (2006) A spin glass model of path integration in rat medial entorhinal cortex. J Neurosci 26(16):4266–4276

    PubMed  CAS  Google Scholar 

  • Fyhn M, Molden S, Witter MP, Moser EI, Moser MB (2004) Spatial representation in the entorhinal cortex. Science 305(5688):1258–1264

    PubMed  CAS  Google Scholar 

  • Gais S, Born J (2004) Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation. Proc Natl Acad Sci USA 101(7):2140–2144

    PubMed  CAS  Google Scholar 

  • Gil Z, Conners BW, Amitai Y (1997) Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19:679–686

    PubMed  CAS  Google Scholar 

  • Gilbert PE, Kesner RP, Lee I (2001) Dissociating hippocampal subregions: double dissociation between dentate gyrus and CA1. Hippocampus 11(6):626–636

    PubMed  CAS  Google Scholar 

  • Giocomo LM, Hasselmo ME (2008a) Computation by oscillations: implications of experimental data for theoretical models of grid cells. Hippocampus 18(12):1186–1199

    PubMed  Google Scholar 

  • Giocomo LM, Hasselmo ME (2008b) Time constants of h current in layer II stellate cells differ along the dorsal to ventral axis of medial entorhinal cortex. J Neurosci 28(38):9414–9425

    PubMed  CAS  Google Scholar 

  • Giocomo LM, Hasselmo ME (2009) Knock-out of HCN1 subunit flattens dorsal-ventral frequency gradient of medial entorhinal neurons in adult mice. J Neurosci 29(23):7625–7630

    PubMed  CAS  Google Scholar 

  • Giocomo LM, Zilli EA, Fransen E, Hasselmo ME (2007) Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315(5819):1719–1722

    PubMed  CAS  Google Scholar 

  • Guzowski JF, Knierim JJ, Moser EI (2004) Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron 44(4):581–584

    PubMed  CAS  Google Scholar 

  • Haberly LB, Bower JM (1984) Analysis of association fiber system in piriform cortex with intracellular recording and staining techniques. J Neurophysiol 51:90–112

    PubMed  CAS  Google Scholar 

  • Haberly LB, Bower JM (1989) Olfactory cortex: model circuit for study of associative memory? Trends Neurosci 12:258–264

    PubMed  CAS  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052):801–806

    PubMed  CAS  Google Scholar 

  • Hafting T, Fyhn M, Bonnevie T, Moser MB, Moser EI (2008) Hippocampus-independent phase precession in entorhinal grid cells. Nature 453(7199):1248–1252

    PubMed  CAS  Google Scholar 

  • Harvey CD, Collman F, Dombeck DA, Tank DW (2009) Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461(7266):941–946

    PubMed  CAS  Google Scholar 

  • Hasselmo ME (1994) Runaway synaptic modification in models of cortex: implications for Alzheimer’s disease. Neural Netw 7:13–40

    Google Scholar 

  • Hasselmo ME (1997) A computational model of the progression of Alzheimer’s disease. MD Comput 14(3):181–191

    PubMed  CAS  Google Scholar 

  • Hasselmo ME (1999) Neuromodulation: acetylcholine and memory consolidation. Trends Cogn Sci 3(9):351–359

    PubMed  Google Scholar 

  • Hasselmo ME (2008) Grid cell mechanisms and function: contributions of entorhinal persistent spiking and phase resetting. Hippocampus 18(12):1213–1229

    PubMed  Google Scholar 

  • Hasselmo ME, Bower JM (1992) Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. J Neurophysiol 67(5):1222–1229

    PubMed  CAS  Google Scholar 

  • Hasselmo ME, Bower JM (1993) Acetylcholine and memory. Trends Neurosci 16(6):218–222

    PubMed  CAS  Google Scholar 

  • Hasselmo ME, Cekic M (1996) Suppression of synaptic transmission may allow combination of associative feedback and self-organizing feedforward connections in the neocortex. Behav Brain Res 79(1–2):153–161

    PubMed  CAS  Google Scholar 

  • Hasselmo ME, Eichenbaum H (2005) Hippocampal mechanisms for the context-dependent retrieval of episodes. Neural Netw 18(9):1172–1190

    PubMed  Google Scholar 

  • Hasselmo ME, Fehlau BP (2001) Differences in time course of ACh and GABA modulation of excitatory synaptic potentials in slices of rat hippocampus. J Neurophysiol 86(4):1792–1802

    PubMed  CAS  Google Scholar 

  • Hasselmo ME, Schnell E (1994) Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology. J Neurosci 14(6):3898–3914

    PubMed  CAS  Google Scholar 

  • Hasselmo ME, Wyble BP (1997) Free recall and recognition in a network model of the hippocampus: simulating effects of scopolamine on human memory function. Behav Brain Res 89(1–2):1–34

    PubMed  CAS  Google Scholar 

  • Hasselmo ME, Wilson MA, Anderson BP, Bower JM (1990) Associative memory function in piriform (olfactory) cortex: computational modeling and neuropharmacology. Cold Spring Harb Symp Quant Biol 55:599–610

    PubMed  CAS  Google Scholar 

  • Hasselmo ME, Anderson BP, Bower JM (1992) Cholinergic modulation of cortical associative memory function. J Neurophysiol 67(5):1230–1246

    PubMed  CAS  Google Scholar 

  • Hasselmo ME, Barkai E, Horwitz G, Bergman RE (1994) Modulation of neuronal adaptation and cortical associative memory function. In: Eeckman F, Bower JM (eds) Computation and neural systems. Kluwer, Norwell, MA

    Google Scholar 

  • Hasselmo ME, Schnell E, Barkai E (1995) Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. J Neurosci 15(7 Pt 2):5249–5262

    PubMed  CAS  Google Scholar 

  • Hasselmo ME, Bodelon C, Wyble BP (2002) A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput 14(4):793–817

    PubMed  Google Scholar 

  • Hasselmo ME, Giocomo LM, Zilli EA (2007) Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons. Hippocampus 17(12):1252–1271

    PubMed  Google Scholar 

  • Herrero JL, Roberts MJ, Delicato LS, Gieselmann MA, Dayan P, Thiele A (2008) Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. Nature 454(7208):1110–1114

    PubMed  CAS  Google Scholar 

  • Heys JG, Giocomo LM, Hasselmo ME (2010) Cholinergic modulation of the resonance properties of stellate cells in layer II of medial entorhinal cortex. J Neurophysiol 104(1):258–270

    PubMed  CAS  Google Scholar 

  • Holmes WR, Levy WB (1990) Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes. J Neurophysiol 63(5):1148–1168

    PubMed  CAS  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent selective computational abilities. Proc Natl Acad Sci USA 79:2554–2559

    PubMed  CAS  Google Scholar 

  • Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc Natl Acad Sci USA 81(10):3088–3092

    PubMed  CAS  Google Scholar 

  • Hounsgaard J (1978) Presynaptic inhibitory action of acetylcholine in area CA1 of the hippocampus. Exp Neurol 62(3):787–797

    PubMed  CAS  Google Scholar 

  • Huxter J, Burgess N, O’Keefe J (2003) Independent rate and temporal coding in hippocampal pyramidal cells. Nature 425(6960):828–832

    PubMed  CAS  Google Scholar 

  • Jensen O, Lisman JE (1996a) Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learn Mem 3:279–287

    PubMed  CAS  Google Scholar 

  • Jensen O, Lisman JE (1996b) Novel lists of 7+/−2 known items can be reliably stored in an oscillatory short-term memory network: interaction with long-term memory. Learn Mem 3:257–263

    PubMed  CAS  Google Scholar 

  • Kali S, Dayan P (2000) The involvement of recurrent connections in area CA3 in establishing the properties of place fields: a model. J Neurosci 20(19):7463–7477

    PubMed  CAS  Google Scholar 

  • Kamondi A, Acsady L, Wang XJ, Buzsaki G (1998) Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8(3):244–261

    PubMed  CAS  Google Scholar 

  • Kimura F (2000) Cholinergic modulation of cortical function: a hypothetical role in shifting the dynamics in cortical network. Neurosci Res 38(1):19–26

    PubMed  CAS  Google Scholar 

  • Kimura F, Baughman RW (1997) Distinct muscarinic receptor subtypes suppress excitatory and inhibitory synaptic responses in cortical neurons. J Neurophysiol 77(2):709–716

    PubMed  CAS  Google Scholar 

  • Kohonen T (1972) Correlation matrix memories. IEEE Trans Comput C-21:353–359

    Google Scholar 

  • Kohonen T (1984) Self-organization and associative memory. Springer, Berlin

    Google Scholar 

  • Kremin T, Hasselmo ME (2007) Cholinergic suppression of glutamatergic synaptic transmission in hippocampal region CA3 exhibits laminar selectivity: implication for hippocampal network dynamics. Neuroscience 149(4):760–767

    PubMed  CAS  Google Scholar 

  • Kropff E, Treves A (2008) The emergence of grid cells: intelligent design or just adaptation? Hippocampus 18(12):1256–1269

    PubMed  Google Scholar 

  • Lee I, Yoganarasimha D, Rao G, Knierim JJ (2004) Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature 430(6998):456–459

    PubMed  CAS  Google Scholar 

  • Lengyel M, Szatmary Z, Erdi P (2003) Dynamically detuned oscillations account for the coupled rate and temporal code of place cell firing. Hippocampus 13(6):700–714

    PubMed  Google Scholar 

  • Leutgeb S, Leutgeb JK, Treves A, Moser MB, Moser EI (2004) Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305(5688):1295–1298

    PubMed  CAS  Google Scholar 

  • Leutgeb JK, Leutgeb S, Moser MB, Moser EI (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315(5814):961–966

    PubMed  CAS  Google Scholar 

  • Levy WB, Steward O (1983) Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8(4):791–797

    PubMed  CAS  Google Scholar 

  • Magee JC (2001) Dendritic mechanisms of phase precession in hippocampal CA1 pyramidal neurons. J Neurophysiol 86(1):528–532

    PubMed  CAS  Google Scholar 

  • Manns JR, Zilli EA, Ong KC, Hasselmo ME, Eichenbaum H (2007) Hippocampal CA1 spiking during encoding and retrieval: relation to theta phase. Neurobiol Learn Mem 87(1):9–20

    PubMed  Google Scholar 

  • Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc B 262:23–81

    CAS  Google Scholar 

  • Marrosu F, Portas C, Mascia MS, Casu MA, Fa M, Giagheddu M, Imperato A, Gessa GL (1995) Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats. Brain Res 671(2):329–332

    PubMed  CAS  Google Scholar 

  • McClelland JL, Rumelhart DE (1988) Explorations in parallel distributed processing. MIT Press, Cambridge, MA

    Google Scholar 

  • McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK, Lowell BB, Fanselow MS, Wilson MA, Tonegawa S (2007) Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317(5834):94–99

    PubMed  CAS  Google Scholar 

  • McNaughton BL (1991) Associative pattern completion in hippocampal circuits: new evidence and new questions. Brain Res Rev 16:193–220

    Google Scholar 

  • McNaughton BL, Morris RGM (1987) Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci 10:408–415

    Google Scholar 

  • McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci 7(8):663–678

    PubMed  CAS  Google Scholar 

  • Mehta MR, McNaughton BL (1997) Expansion and shift of hippocampal place fields: evidence for synaptic potentiation during behavior. In: Bower JM (ed) Computational neuroscience. Plenum Press, New York, pp 741–744

    Google Scholar 

  • Mehta MR, Barnes CA, McNaughton BL (1997) Experience-dependent, asymmetric expansion of hippocampal place fields. Proc Natl Acad Sci USA 94(16):8918–8921

    PubMed  CAS  Google Scholar 

  • Mehta MR, Quirk MC, Wilson MA (2000) Experience-dependent asymmetric shape of hippocampal receptive fields. Neuron 25(3):707–715

    PubMed  CAS  Google Scholar 

  • Mehta MR, Lee AK, Wilson MA (2002) Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417(6890):741–746

    PubMed  CAS  Google Scholar 

  • Molyneaux BJ, Hasselmo ME (2002) GABA(B) presynaptic inhibition has an in vivo time constant sufficiently rapid to allow modulation at theta frequency. J Neurophysiol 87(3):1196–1205

    PubMed  CAS  Google Scholar 

  • Nakashiba T, Young JZ, McHugh TJ, Buhl DL, Tonegawa S (2008) Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science 319(5867):1260–1264

    PubMed  CAS  Google Scholar 

  • Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA, Johnston D, Wilson MA et al (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297(5579):211–218

    PubMed  CAS  Google Scholar 

  • Navratilova Z, Giocomo LM, Fellous JM, Hasselmo ME, McNaughton BL (2012) Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics. Hippocampus 22:772–789

    Google Scholar 

  • O’Keefe J, Burgess N (2005) Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus 15(7):853–866

    PubMed  Google Scholar 

  • O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330

    PubMed  Google Scholar 

  • O’Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 4(6):661–682

    PubMed  Google Scholar 

  • Rasch BH, Born J, Gais S (2006) Combined blockade of cholinergic receptors shifts the brain from stimulus encoding to memory consolidation. J Cogn Neurosci 18(5):793–802

    PubMed  Google Scholar 

  • Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 348(14):1333–1341

    PubMed  CAS  Google Scholar 

  • Remme MW, Lengyel M, Gutkin BS (2009) The role of ongoing dendritic oscillations in single-neuron dynamics. PLoS Comput Biol 5(9):e1000493

    PubMed  Google Scholar 

  • Remme MW, Lengyel M, Gutkin BS (2010) Democracy-independence trade-off in oscillating dendrites and its implications for grid cells. Neuron 66(3):429–437

    PubMed  CAS  Google Scholar 

  • Rizzuto DS, Madsen JR, Bromfield EB, Schulze-Bonhage A, Kahana MJ (2006) Human neocortical oscillations exhibit theta phase differences between encoding and retrieval. Neuroimage 31(3):1352–1358

    PubMed  Google Scholar 

  • Roberts MJ, Zinke W, Guo K, Robertson R, McDonald JS, Thiele A (2005) Acetylcholine dynamically controls spatial integration in marmoset primary visual cortex. J Neurophysiol 93(4):2062–2072

    PubMed  CAS  Google Scholar 

  • Rumelhart RE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536

    Google Scholar 

  • Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312(5774):758–762

    PubMed  CAS  Google Scholar 

  • Schacter D (1982) Stranger behind the engram: theories of memory and the psychology of science. Lawrence, Hillsdale, NJ

    Google Scholar 

  • Shirey JK, Xiang Z, Orton D, Brady AE, Johnson KA, Williams R, Ayala JE, Rodriguez AL, Wess J, Weaver D et al (2008) An allosteric potentiator of M4 mAChR modulates hippocampal synaptic transmission. Nat Chem Biol 4(1):42–50

    PubMed  CAS  Google Scholar 

  • Silver MA, Shenhav A, D’Esposito M (2008) Cholinergic enhancement reduces spatial spread of visual responses in human early visual cortex. Neuron 60(5):904–914

    PubMed  CAS  Google Scholar 

  • Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:149–172

    PubMed  CAS  Google Scholar 

  • Tahvildari B, Fransen E, Alonso AA, Hasselmo ME (2007) Switching between “On” and “Off” states of persistent activity in lateral entorhinal layer III neurons. Hippocampus 17(4):257–263

    PubMed  Google Scholar 

  • Toth K, Freund TF, Miles R (1997) Disinhibition of rat hippocampal pyramidal cells by GABAergic afferent from the septum. J Physiol 500:463–474

    PubMed  CAS  Google Scholar 

  • Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4(3):374–391

    PubMed  CAS  Google Scholar 

  • Tsodyks MV, Skaggs WE, Sejnowski TJ, McNaughton BL (1996) Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron model. Hippocampus 6(3):271–280

    PubMed  CAS  Google Scholar 

  • Valentino RJ, Dingledine R (1981) Presynaptic inhibitory effect of acetylcholine in the hippocampus. J Neurosci 1:784–792

    PubMed  CAS  Google Scholar 

  • van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274(5293):1724–1726

    PubMed  Google Scholar 

  • Vazdarjanova A, Guzowski JF (2004) Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J Neurosci 24(29):6489–6496

    PubMed  CAS  Google Scholar 

  • Villarreal DM, Gross AL, Derrick BE (2007) Modulation of CA3 afferent inputs by novelty and theta rhythm. J Neurosci 27(49):13457–13467

    PubMed  CAS  Google Scholar 

  • Vogt KE, Regehr WG (2001) Cholinergic modulation of excitatory synaptic transmission in the CA3 area of the hippocampus. J Neurosci 21(1):75–83

    PubMed  CAS  Google Scholar 

  • Wallenstein GV, Hasselmo ME (1997) GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. J Neurophysiol 78(1):393–408

    PubMed  CAS  Google Scholar 

  • Wilson MA, Bower JM (1992) Cortical oscillations and temporal interactions in a computer simulation of piriform cortex. J Neurophysiol 67:981–995

    PubMed  CAS  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12(1):1–24

    PubMed  CAS  Google Scholar 

  • Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 1973(13):2

    Google Scholar 

  • Wyble BP, Hasselmo ME (1997) A model of the effects of scopolamine on human memory performance. In: Bower JM (ed) Computational neuroscience: trends in research 1997. Plenum Press, New York, pp 891–896

    Google Scholar 

  • Wyble BP, Linster C, Hasselmo ME (2000) Size of CA1-evoked synaptic potentials is related to theta rhythm phase in rat hippocampus. J Neurophysiol 83(4):2138–2144

    PubMed  CAS  Google Scholar 

  • Yoshida M, Hasselmo ME (2009) Persistent firing supported by an intrinsic cellular mechanism in a component of the head direction system. J Neurosci 29(15):4945–4952

    PubMed  CAS  Google Scholar 

  • Zilli EA, Hasselmo ME (2010) Coupled noisy spiking neurons as velocity-controlled oscillators in a model of grid cell spatial firing. J Neurosci 30(41):13850–13860

    PubMed  CAS  Google Scholar 

  • Zilli EA, Yoshida M, Tahvildari B, Giocomo LM, Hasselmo ME (2009) Evaluation of the oscillatory interference model of grid cell firing through analysis and measured period variance of some biological oscillators. PLoS Comput Biol 5(11):e1000573

    PubMed  Google Scholar 

  • Zugaro MB, Monconduit L, Buzsaki G (2005) Spike phase precession persists after transient intrahippocampal perturbation. Nat Neurosci 8(1):67–71

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research supported by Silvio O. Conte Center grant NIMH MH71702, NIMH R01 MH61492; NSF Sciences of Learning Center CELEST SBE 0354378 and NIMH R01 60013 and ONR MURI N00014-10-1-0936.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Hasselmo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hasselmo, M.E. (2013). 20 Years of the Dynamics of Memory: The Long and Winding Road Linking Cellular Mechanisms to Behavior. In: Bower, J. (eds) 20 Years of Computational Neuroscience. Springer Series in Computational Neuroscience, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1424-7_10

Download citation

Publish with us

Policies and ethics