Skip to main content

Parallel Processing, Multiprocessors and Virtualization in Data-Intensive Computing

  • Chapter
  • First Online:
Handbook of Data Intensive Computing

Abstract

Efficient use of hardware resources is the cornerstone to achieve the highest possible performance out of any Data Intensive cluster [1]. Utilization levels of subsystems within each node and across all the nodes in the cluster, such as CPU, Memory, I/O and disk vary at different phases of the execution plan. Balancing these resources during the architectural design can be challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.S. Szalay, G. Bell, J. Vandenberg, A. Wonders, R. Burns, D. Fay, J. Heasley, T. Hey, M. Nieto-SantiSteban, A. Thakar, C. Van Ingen, and R. Wilton. “Gray Wulf”: Scalable Clustered Architecture for Data Intensive Computing,” Proceedings of the 42nd Hawaii International Conference on System Sciences. 2009.

    Google Scholar 

  2. D. Lee, J.-L. Baer, B. Calder, and D. Grunwald. “Instruction Cache Fetch Policies for Speculative Execution,” 22nd Annual International Symposium on Computer Architecture. Italy, June 1995.

    Google Scholar 

  3. M.F. Younis, T.J. Marlowe, A.D. Stoyen, and G. Tsai. “Statically Safe Speculative Execution for Real-Time Systems,” IEEE Transactions on software engineering, Vol. 25, No. 3, May/June 1999.

    Google Scholar 

  4. B.L. Deitrich, B.C. Chen, and W.W. Hwu. “Improving static branch prediction in a compiler,” Proceedings of the International Conference on Parallel Architectures and Compilation Techniques. 1998.

    Google Scholar 

  5. B. Furht, and A. Escalante. “Data Intensive Technologies for Cloud Computing,” Handbook of Cloud Computing, Springer, 2010.

    Google Scholar 

  6. J.C. Dehnert, B. K. Grant, J.P. Banning, R. Johnson, T. Kistler, A. Klaiber, and J. Mattson. “The Transmeta Code MorphingTM Software: Using Speculation, Recovery, and Adaptive Retranslation to Address Real-Life Challenges,” Proceedings of the First Annual IEEE/ACM International Symposium on Code Generation and Optimization. 27–29 March 2003.

    Google Scholar 

  7. C. Li, N.K. Jha, and A. Raghunathan. “Secure Virtual Machine Execution under an Untrusted Management OS,” International Conference on Cloud Computing, IEEE, 2010.

    Google Scholar 

  8. R. Uglig, G. Neiger, D. Rodgers, A.L. Santoni, F.C.M. Martins, A.V. Anderson, S.M. Bennett, A. Kagi, F.H. Leung, and L. Smith. “Intel Virtualization Technology,” Computer Vol. 38 No. 5, May 2005, pp. 48–56.

    Article  Google Scholar 

  9. R. Figueiredo, P.A. Dinda, and J. Fortes. “Resource Virtualization Renaissance.” Computer, Vol. 38 No. 5, May 2005, pp. 28–31.

    Article  Google Scholar 

  10. G. Strongin. “Trusted computing using AMD “Pacifica” and “Presidio” secure virtual machine technology,” Journal Information Security Tech. Report, Vol. 10 No. 2, January 2005.

    Google Scholar 

  11. K. Nance, B. Hay, and M. Bishop. “Virtual Machine Introspection,” IEEE Computer Society, 2008.

    Google Scholar 

  12. S.T. King, G.W. Dunlap, and P.M. Chen. “Operating System support for virtual machines,” Proceedings of the annual conference on USENIX Annual Technical Conference (ATEC’03), 2003.

    Google Scholar 

  13. S. Soltesz, H. Potzl, M.E. Fiuczynski, A. Bavier, and L. Peterson. “Container-based operating system virtualization: a scalable, high-performance alternative to hypervisors,” Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems (EuroSys’07), 2007.

    Google Scholar 

  14. T. Jones, S. Dawson, R. Neely, W. Tuel, L. Breener, J. Fier, R. Blackmore, P. Caffrey, B. Maskell, P. Tomlinson, and M. Roberts. “Improving the Scalability of Parallel Jobs by adding Parallel Awareness to the Operating System,” ACM/IEEE Conference on Supercomputing, 2003.

    Google Scholar 

  15. M. Herlihy. “A methodology for implementing highly concurrent data structures,” Proceedings of the second ACM SIGPLAN symposium on Principles & practice of parallel programming (PPOPP’90), 1990.

    Google Scholar 

  16. H. Franke, R. Russell, and M. Krikwood. “Fuss, Futexes and Furwocks: Fast Userlevel Locking in Linux,” Proceedings of the 2002 Ottawa Linux Summit, 2002.

    Google Scholar 

  17. M. Cannataro, D. Talia, and P.K. Srimani. “Parallel data intensive computing in scientific and commercial applications,” Journal of Parallel Computing – Parallel data-intensive algorithms and applications. Vol. 28 No. 5, May 2002.

    Google Scholar 

  18. A. Sohn, M. Sato, N. Yoo, and J.L. Gaudiot. “Data and Workload Distribution in a Multithreaded Architecture.” Journal of Parallel and Distributed Computing, Vol. 40, No. 2, Feb. 1997, pp. 256–264.

    Article  Google Scholar 

  19. K.B. Wheeler, R.C. Murphy, and D. Thain. “Qthreads: An API for programming with millions of lightweight threads,” IEEE International Symposium on Parallel and Distributed Processing, 2008.

    Google Scholar 

  20. Q. Wu, and Y. Gu. “Optimizing end-to-end performance of data-intensive computing pipelines in heterogeneous network environments,” Journal of Parallel and Distributed Computing, Vol. 71, No. 2, February 2011.

    Google Scholar 

  21. M. Gokhale, J. Cohen, A. Yoo, W.M. Miller, A. Jacob, C. Ulmer, and R. Pearce. “Hardware Technologies for High-Performance Data-Intensive Computting,” Computer, Vol. 41, No. 4, April 2008.

    Google Scholar 

  22. S. Saini, A. Naraikin, R. Biswas, D. Barkai, and T. Sandstrom. “Early performance evaluation of a “Nehalem” cluster using scientific and engineering applications,” Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC’09), 2009.

    Google Scholar 

  23. W.M. Hassanein, M.A. Hammad, and L. Rashid. “Characterizing the Performance of Data Management Systems on Hyper-Threaded Architectures,” Proceedings of the 18th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’06), 2006.

    Google Scholar 

  24. S. Soudan, R. Guillier, L. Hablot, Y. Kodama, T. Kudoh, F. Okazaki, R. Takano, and P. Primet. “Investigation of ethernet switches behaviour in presence of contending flows at very high speed,” PFLDnet 2007, Feb. 2007.

    Google Scholar 

  25. S. Hansen, T. Wilcox, and D. Stanzione. “Infiniband routing and switching: improving fabric scalability, distance, and fault isolation,” Proceedings of the 2006 ACM/IEEE conference on Supercomputing (SC’06), 2006.

    Google Scholar 

  26. D.K. Panda, and P. Balaji. “Designing high-end computing systems with InfiniBand and 10-Gigabit Ethernet iWARP,” Proceedings of the 2007 IEEE International Conference on Cluster Computing (CLUSTER’07), 2007.

    Google Scholar 

  27. H. Stockinger, M. Pagni, L. Cerutti, and L. Falquet. “Grid Approach to Embarrassingly Parallel CPU-Intensive Bioinformatics Problems,” Proceedings of the Second IEEE International Conference on e-Science and Grid Computing (E-SCIENCE’06), 2006.

    Google Scholar 

  28. O. Sahni, C.D. Carothers, M.S. Shephard, and K.E. Jansen. “Strong scaling analysis of a parallel, unstructured, implicit solver and the influence of the operating system interference,” Scientific Programming, Vol. 17, No. 3, Aug. 2009.

    Google Scholar 

  29. G.M. Amdahl. “Validity of the single-processor approach to achieving large scale computing capabilities,” AFIPS Conference Proceedings, Vol. 30, 1967, pp. 483–485.

    Google Scholar 

  30. J.L. Gustafson. “Reevaluating Amdahl’s Law,” Communications of the ACM, Vol. 31, No. 5, 1988.

    Google Scholar 

  31. S. Krishnaprasad. “Uses and abuses of Amdahl’s law,” Journal of Computing Sciences in Colleges, Vol. 17, No. 2, Dec. 2001.

    Google Scholar 

  32. M. Ivanova, and T. Risch. “Customizable parallel execution of scientific stream queries,” Proceedings of the 31st international conference on Very large data bases (VLDB’05), 2005.

    Google Scholar 

  33. A. Yoo, and I. Kaplan. “Evaluating use of data flow systems for large graph analysis,” Proceedings of the 2nd Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS’09), 2009.

    Google Scholar 

  34. D. Bayliss, R. Chapman, J. Smith, O. Poulsen, G. Halliday, and N. Hicks. “System and method for configuring a parallel processing database system,” US Patent 7240059, 2007.

    Google Scholar 

  35. D. Bayliss, R. Chapman, J. Smith, O. Poulsen, G. Halliday, and N. Hicks. “Query scheduling in a parallel-processing database system,” US Patent 7185003, 2007.

    Google Scholar 

  36. M.M.T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller, and S. Marlow. “Proceedings of the 2007 workshop on Declarative aspects of multicore programming (DAMP’07), 2007.

    Google Scholar 

  37. P. Krajca, and V. Vychodil. “Data Parallel Dialect of Scheme,” Proceedings of the 24th Annual ACM Symposium on Applied Computing (SAC’09), 2009, pp. 1938–1940.

    Google Scholar 

  38. P. Krajca, and V. Vychodil. “Software transactional memory for implicitly parallel functional language,” Proceedings of the 25th Annual ACM Symposium on Applied Computing (SAC’10), 2010, pp. 2123–2130.

    Google Scholar 

  39. J.W. Lloyd. “Practical advantages of declarative programming,” Joint Conference on Declarative Programming (GULP-PRODE’94), 1994.

    Google Scholar 

  40. T. Willhalm. “Putting intelTM threading building blocks to work,” Proceedings of the 1st international workshop on Multicore software engineering (IWMSE’08), 2008.

    Google Scholar 

  41. J.P. Hoeflinger. “Programming with cluster openMP,” Proceedings of the 12th ACM SIGPLAN symposium on Principles and practice of parallel programming (PPoPP’07), 2007.

    Google Scholar 

  42. W. Gropp, R. Thakur, and E. Lusk. “Using MPI-2: Advanced Features of the Message Passing Interface,” MIT Press, ISBN: 026257134X, 1999.

    Google Scholar 

  43. J. Dean, and S. Ghewmawat, “MapReduce: simplified data processing on large clusters,” Communications of the ACM, 50th anniversary issue, Vol. 51, No. 1, Jan. 2008.

    Google Scholar 

  44. T. Chun-Wein, T. Shih-Pang, C. Ming-Chao, and Y. Chu-Sing. “A fast parallel genetic algorithm for traveling salesman problem,” Proceedings of the Second Russia-Taiwan conference on Methods and tools of parallel programming multicomputers (MTPP’10), 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Burger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Burger, J., Chapman, R., Villanustre, F. (2011). Parallel Processing, Multiprocessors and Virtualization in Data-Intensive Computing. In: Furht, B., Escalante, A. (eds) Handbook of Data Intensive Computing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1415-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1415-5_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1414-8

  • Online ISBN: 978-1-4614-1415-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics