Skip to main content

Emerging Trends in Water Photoelectrolysis

  • Chapter
  • First Online:
Photoelectrochemical Hydrogen Production

Part of the book series: Electronic Materials: Science & Technology ((EMST,volume 102))

Abstract

The prospect of future progress in water photoelectrolysis critically depends upon the discovery and application of new materials, structures, and device architectures. Developments in closely related areas, such as solar cells, provide ample guidance for the application of new concepts in nanomaterials and nanophotonics to the challenges confronting electrochemical energy conversion devices. This review examines opportunities that have emerged as a consequence of new synthetic routes for nanostructured semiconductors and metals. Design criteria for building efficient devices are considered for semiconductors with low mobility and short carrier lifetimes. It is then shown how these design criteria can be modified by exploiting the plasmon resonance of metallic nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holstein, T.: Studies of polaron motion. Part I. The molecular-crystal model. Ann. Phys. 8, 325–342 (1959)

    Article  Google Scholar 

  2. Bosman, A.J., van Daal, H.J.: Small-polaron versus band conduction in some transition-metal oxides. Adv. Phys. 19, 1–117 (1970)

    Article  Google Scholar 

  3. Marcus, R.A.: Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 15, 155–196 (1964)

    Article  Google Scholar 

  4. Shluger, A.L., Stoneham, A.M.: Small polarons in real crystals: concepts and problems. J. Phys. D Condens. Mat. 5, 3049–3086 (1993)

    Article  Google Scholar 

  5. Austin, I.G., Mott, N.F.: Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102 (1969)

    Article  Google Scholar 

  6. Gärtner, W.W.: Depletion-layer photoeffects in semiconductors. Phys. Rev. 116, 84–87 (1959)

    Article  Google Scholar 

  7. Butler, M.A.: Photoelectrolysis and physical properties of the semiconducting electrode WO3. J. Appl. Phys. 48, 1914–1920 (1977)

    Article  Google Scholar 

  8. Jarrett, H.S.: Photocurrent conversion efficiency in a schottky barrier. J. Appl. Phys. 52, 4681–4689 (1981)

    Article  Google Scholar 

  9. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley, Hoboken (2007)

    Google Scholar 

  10. Miller, R.J.D., Memming, R.: Fundamentals in photoelectrochemistry. In: Archer, M.D., Nozik, A.J. (eds.) Nanostructured and Photoelectrochemical Systems For Solar Photon Conversion, pp. 760. Imperial College Press, London (2008)

    Google Scholar 

  11. Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835 (1952)

    Article  MATH  Google Scholar 

  12. Emin, D.: Lattice relaxation and small-polaron hopping motion. Phys. Rev. B 4, 3639–3651 (1971)

    Article  Google Scholar 

  13. Emin, D., Holstein, T.: Adiabatic theory of an electron in a deformable continuum. Phys. Rev. Lett. 36, 323 (1976)

    Article  Google Scholar 

  14. Dell'Oca, C.J., Fleming, P.J.: Initial stages of oxide growth and pore initiation in the porous anodization of aluminum. J. Electrochem. Soc. 123, 1487–1493 (1976)

    Article  Google Scholar 

  15. Parkhutik, V.P., Shershulsky, V.I.: Theoretical modeling of porous oxide growth on aluminum. J. Phys. D Appl. Phys. 25, 1258–1263 (1992)

    Article  Google Scholar 

  16. Masuda, H., Fukuda, K.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995)

    Article  Google Scholar 

  17. Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, materials properties, and solar energy applications. Solar Energ. Mater. Solar Cells 90, 2011–2075 (2006)

    Article  Google Scholar 

  18. Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., Dickey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331–3334 (2001)

    Article  Google Scholar 

  19. Sieber, I., Kannan, B., Schmuki, P.: Self-assembled porous tantalum oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 8, J10–J12 (2005)

    Article  Google Scholar 

  20. Vijayavalli, R., Vasudeva Rao, P.V., Udupa, H.V.K.: Effect of ac superimposition on dc in the cathodic polarization of anodized cadmium in alkaline solution. Electrochim. Acta 16, 1197–1200 (1971)

    Article  Google Scholar 

  21. Sieber, I., Hildebrand, H., Friedrich, A., Schmuki, P.: Formation of self-organized niobium porous oxide on niobium. Electrochem. Comm. 7, 97–100 (2005)

    Article  Google Scholar 

  22. Hsiao, H.-Y., Tsai, W.-T.: Characterization of anodic films formed on AZ91D magnesium alloy. Surf. Coat. Technol. 190, 299–308 (2005)

    Article  Google Scholar 

  23. Tsuchiya, H., Macak, J.M., Sieber, I., Taveira, L., Ghicov, A., Sirotna, K., Schmuki, P.: Self-organized porous WO3 formed in NaF electrolytes. Electrochem. Commun. 7, 295–298 (2005)

    Article  Google Scholar 

  24. Metikos-Hukovic, M., Reseti’c, A., Gvozdic, V.: Behaviour of tin as a valve metal. Electrochim. Acta 40, 1777–1779 (1995)

    Article  Google Scholar 

  25. Prakasam, H.E., Varghese, O.K., Paulose, M., Mor, G.K., Grimes, C.A.: Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization. Nanotechnology 17, 4285–4291 (2006)

    Article  Google Scholar 

  26. Wales, C.P., Burbank, J.: Oxides on the silver electrode. J. Electrochem. Soc. 106, 885–890 (1959)

    Article  Google Scholar 

  27. Föll, H., Christophersen, M., Carstensen, J., Hasse, G.: Formation and application of porous silicon. Mater. Sci. Eng. R 39, 93–141 (2002)

    Article  Google Scholar 

  28. Mohapatra, S.K., John, S.E., Banerjee, S., Misra, M.: Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem. Mater. 21, 3048–3055 (2009)

    Article  Google Scholar 

  29. Masuda, H., Hasegwa, F., Ono, S.: Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 144, L127–L130 (1997)

    Article  Google Scholar 

  30. Varghese, O.K., Paulose, M., Shankar, K., Mor, G.K., Grimes, C.A.: Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J. Nanosci. Nanotechnol. 5, 1158–1165 (2005)

    Article  Google Scholar 

  31. Lee, W., Ji, R., Gosele, U., Nielsch, K.: Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 5, 741–747 (2006)

    Article  Google Scholar 

  32. Odier, P., Baumard, J.F., Panis, D., Anthony, A.M.: Thermal emission, electrical conductivity, and hall effect for defects study at high temperature (T ≥ 1250 K) in refractory oxides (Y2O3, TiO2). J. Solid State Chem. 12, 324–328 (1975)

    Article  Google Scholar 

  33. Bak, T., Nowotny, M.K., Sheppard, L.R., Nowotny, J.: Mobility of electronic charge carriers in titanium dioxide. J. Phys. Chem. C 112, 12981–12987 (2008)

    Article  Google Scholar 

  34. Bak, T., Nowotny, J., Rekas, M., Sorrell, C.C.: Defect chemistry and semiconducting properties of titanium dioxide: III. Mobility of electronic charge carriers. J. Phys. Chem. Solids 64, 1069–1087 (2003)

    Article  Google Scholar 

  35. Kerisit, S., Deskins, N.A., Rosso, K.M., Dupuis, M.: A shell model for atomistic simulation of charge transfer in titania. J. Phys. Chem. C 112, 7678–7688 (2008)

    Article  Google Scholar 

  36. Deskins, N.A., Dupuis, M.: Intrinsic hole migration rates in TiO2 from density functional theory. J. Phys. Chem. C 113, 346–358 (2008)

    Article  Google Scholar 

  37. Rothenberger, G., Moser, J., Grätzel, M., Serpone, N., Sharma, D.K.: Charge carrier trapping and recombination dynamics in small semiconductor particles. J. Am. Chem. Soc. 107, 8054–8059 (1985)

    Article  Google Scholar 

  38. Bahnemann, D.W., Hilgendorff, M., Memming, R.: Charge carrier dynamics at TiO2 particles: reactivity of free and trapped holes. J. Phys. Chem. B 101, 4265–4275 (1997)

    Article  Google Scholar 

  39. Mor, G.K., Shankar, K., Varghese, O.K., Grimes, C.A.: Photoelectrochemical properties of titania nanotubes. J. Mater. Res. 19, 2989–2996 (2004)

    Article  Google Scholar 

  40. Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A.: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191–195 (2005)

    Article  Google Scholar 

  41. Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K., Grimes, C.A.: Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18, 065707 (2007)

    Article  Google Scholar 

  42. Paulose, M., Mor, G.K., Varghese, O.K., Shankar, K., Grimes, C.A.: Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J. Photochem. Photobiol. A 178, 8–15 (2006)

    Article  Google Scholar 

  43. Choi, W., Termin, A., Hoffmann, M.R.: The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669–13679 (1994)

    Article  Google Scholar 

  44. Irie, H., Watanabe, Y., Hashimoto, K.: Nitrogen-concentration dependence on photocatalytic activity of TiO2−x N x powders. J. Phys. Chem. B 107, 5483–5486 (2003)

    Article  Google Scholar 

  45. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)

    Article  Google Scholar 

  46. Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J., Gole, J.L.: Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 3, 1049–1051 (2003)

    Article  Google Scholar 

  47. Mor, G.K., Varghese, O.K., Wilke, R.H.T., Sharma, S., Shankar, K., Latempa, T.J., Choi, K.-S., Grimes, C.A.: P-type Cu–Ti–O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett. 8, 1906–1911 (2008)

    Article  Google Scholar 

  48. Nakau, T.: Electrical conductivity of α-Fe2O3. J. Phys. Soc. Jpn. 15, 727 (1960)

    Article  Google Scholar 

  49. Iordanova, N., Dupuis, M., Rosso, K.M.: Charge transport in metal oxides: a theoretical study of hematite α-Fe2O3. J. Chem. Phys. 122, 144305–144310 (2005)

    Article  Google Scholar 

  50. Benjelloun, D., Bonnet, J.-P., Dordor, P., Launay, J.-C., Onillon, M., Hagenmuller, P.: Anisotropie des propriétés électriques de monocristaux de Fe2O3-α dopés au nickel. Rev. Chim. Miner. 21, 721–731 (1984)

    Google Scholar 

  51. Rosso, K.M., Dupuis, M.: Reorganization energy associated with small polaron mobility in iron oxide. J. Chem. Phys. 120, 7050–7054 (2004)

    Article  Google Scholar 

  52. Kay, A., Cesar, I., Grätzel, M.: New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)

    Article  Google Scholar 

  53. Li, F., Zhang, L., Metzger, R.M.: On the growth of highly ordered pores in anodized aluminum oxide. Chem. Mater. 10, 2470–2480 (1998)

    Article  Google Scholar 

  54. Nielsch, K., Choi, J., Schwirn, K., Wehrspohn, R.B., Gosele, U.: Self-ordering regimes of porous alumina: The 10% porosity rule. Nano Lett. 2, 677–680 (2002)

    Article  Google Scholar 

  55. Macák, J.M., Tsuchiya, H., Schmuki, P.: High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed. 44, 2100–2102 (2005)

    Article  Google Scholar 

  56. Jessensky, O., Muller, F., Gosele, U.: Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173–1175 (1998)

    Article  Google Scholar 

  57. Li, A.P., Muller, F., Birner, A., Nielsch, K., Gosele, U.: Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023–6026 (1998)

    Article  Google Scholar 

  58. Allam, N.K., Shankar, K., Grimes, C.A.: A general method for the anodic formation of crystalline metal oxide nanotube arrays without the use of thermal annealing. Adv. Mater. 20, 3942–3946 (2008)

    Article  Google Scholar 

  59. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  Google Scholar 

  60. Fang, N., Lee, H., Sun, C., Zhang, X.: Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)

    Article  Google Scholar 

  61. Lee, H., Xiong, Y., Fang, N., Srituravanich, W., Durant, S., Ambati, M., Sun, C., Zhang, X.: Realization of optical superlens imaging below the diffraction limit. New J. Phys. 7, 255–255 (2005)

    Article  Google Scholar 

  62. Melville, D., Blaikie, R.: Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127–2134 (2005)

    Article  Google Scholar 

  63. Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer, Berlin (1995)

    Google Scholar 

  64. Link, S., El-Sayed, M.A.: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999)

    Article  Google Scholar 

  65. Stenzel, O., Stendal, A., Voigtsberger, K., von Borczyskowski, C.: Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters. Solar Energ. Mater. Solar Cells 37, 337–348 (1995)

    Article  Google Scholar 

  66. Rand, B.P., Peumans, P., Forrest, S.R.: Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 96, 7519–7526 (2004)

    Article  Google Scholar 

  67. Pillai, S., Catchpole, K.R., Trupke, T., Green, M.A.: Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105–093108 (2007)

    Article  Google Scholar 

  68. Pala, R.A., White, J., Barnard, E., Liu, J., Brongersma, M.L.: Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009)

    Article  Google Scholar 

  69. Ferry, V.E., Sweatlock, L.A., Pacifici, D., Atwater, H.A.: Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 8, 4391–4397 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

S. C. W. thanks Michael Grätzel and Hen Dotan for fruitful discussions and the Swiss Federal Office of Energy (PEChouse, project number 102326) and the European Commission’s Framework Project 7 (NanoPEC, Project 227179) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott C. Warren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Warren, S.C. (2012). Emerging Trends in Water Photoelectrolysis. In: van de Krol, R., Grätzel, M. (eds) Photoelectrochemical Hydrogen Production. Electronic Materials: Science & Technology, vol 102. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1380-6_9

Download citation

Publish with us

Policies and ethics