Skip to main content

Nanostructured α-Fe2O3 Photoanodes

  • Chapter
  • First Online:
Photoelectrochemical Hydrogen Production

Part of the book series: Electronic Materials: Science & Technology ((EMST,volume 102))

Abstract

Due to its abundance, stability, and ability to absorb solar irradiation, Hematite, α-Fe2O3, has been investigated for its application in solar hydrogen production via water splitting for more than three decades. However, the recent application of nanostructuring techniques has provided significant advances in the performance of hematite photoanodes. Here, the basic material properties, the attractive aspects, and the challenges presented by hematite for photoelectrochemical (PEC) water splitting are reviewed. Various methods of enhancing performance by nanometer morphology control are detailed and the resulting PEC performances are compared. These techniques, including solution-based routes for porous thin films and nanowire arrays, potentiostatic anodization for nanotube arrays, electrodeposition, ultrasonic spray pyrolysis, and atmospheric pressure chemical vapor deposition, have increased the understanding of the material parameters critical to the performance of hematite, and resulted in an increase of quantum efficiency to over 20% with 450 nm light (compared to 6% with optimized single crystals under similar conditions) and an overall solar-to-hydrogen (STH) conversion efficiency of 3.3% when used in a tandem device. In addition, the remaining limitations of morphology, carrier recombination, slow oxidation kinetics, and flatband potential are presented with the recent advances and approaches in overcoming them and realizing the full potential of hematite for solar hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)

    Article  Google Scholar 

  2. Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001)

    Article  Google Scholar 

  3. Khaselev, O., Turner, J.A.: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425 (1998)

    Article  Google Scholar 

  4. Ni, M., Leung, M.K.H., Leung, D.Y.C., Sumathy, K.: A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energ. Rev. 11, 401 (2007). doi:10.1016/j.rser.2005.01.009

    Article  Google Scholar 

  5. Santato, C., Ulmann, M., Augustynski, J.: Photoelectrochemical properties of nanostructured tungsten trioxide films. J. Phys. Chem. B 105, 936 (2001)

    Article  Google Scholar 

  6. Murphy, A.B., Barnes, P.R.F., Randeniya, L.K., Plumb, I.C., Grey, I.E., Horne, M.D., Glasscock, J.A.: Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 31, 1999 (2006). doi:DOI 10.1016/j.ijhydene.2006.01.014

    Article  Google Scholar 

  7. Cornell, R.M., Schwertmann, U.: The iron oxides: structure, properties, reactions, occurrences, and uses. Wiley-VCH, Weinheim (2003)

    Google Scholar 

  8. Sivula, K., Le Formal, F., Grätzel, M.: WO3–Fe2O3 photoanodes for water splitting: a host scaffold. Guest absorber approach. Chem. Mater. 21, 2862 (2009). doi:10.1021/cm900565a

    Article  Google Scholar 

  9. Zboril, R., Mashlan, M., Petridis, D.: Iron(III) oxides from thermal processes-synthesis, structural and magnetic properties, Mossbauer spectroscopy characterization, and applications. Chem. Mater. 14, 969 (2002). doi:10.1021/cm0111074

    Article  Google Scholar 

  10. Iordanova, N., Dupuis, M., Rosso, K.M.: Charge transport in metal oxides: a theoretical study of hematite alpha-Fe2O3. J. Chem. Phys. 122, 144305 (2005)

    Article  Google Scholar 

  11. Wang, X.O., Gao, L.S., Zheng, H.G., Ji, M.R., Shen, T., Zhang, Z.: Fabrication and electrochemical properties of alpha-Fe2O3 nanoparticles. J. Cryst. Growth 269, 489 (2004). doi:10.1016/j.jcrysgro.2004.05.081

    Article  Google Scholar 

  12. Hermanek, M., Zboril, R., Medrik, N., Pechousek, J., Gregor, C.: Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles. J. Am. Chem. Soc. 129, 10929 (2007)

    Article  Google Scholar 

  13. Cesar, I., Sivula, K., Kay, A., Zboril, R., Grätzel, M.: Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113, 772 (2009). doi:10.1021/jp809060p

    Article  Google Scholar 

  14. Lindgren, T., Vayssieres, L., Wang, H., Lindquist, S.E.: Photo-oxidation of water at hematite electrodes. In: Kokorin, A.I., Bahnemann, D.W. (eds.) Chemical Physics of Nanostructured Semiconductors, pp. 83–103. VSP International Science Publishers, The Netherlands (2003)

    Google Scholar 

  15. Marusak, L.A., Messier, R., White, W.B.: Optical-absorption spectrum of hematite, alpha-Fe2O3 near IR to UV. J. Phys. Chem. Solids 41, 981 (1980)

    Article  Google Scholar 

  16. Galuza, A.I., Beznosov, A.B., Eremenko, V.V.: Optical absorption edge in alpha-Fe2O3: the exciton-magnon structure. Low Temp. Phys. 24, 726 (1998)

    Article  Google Scholar 

  17. Gardner, R.F.G., Tanner, D.W., Sweett, F.: Electrical properties of alpha ferric oxide. 2. Ferric oxide of high purity. J. Phys. Chem. Solids 24, 1183 (1963)

    Article  Google Scholar 

  18. Kennedy, J.H., Frese, K.W.: Photo-oxidation of water at Alpha-Fe2O3 electrodes. J. Electrochem. Soc. 125, 709 (1978)

    Article  Google Scholar 

  19. Beermann, N., Vayssieres, L., Lindquist, S.E., Hagfeldt, A.: Photoelectrochemical studies of oriented nanorod thin films of hematite. J. Electrochem. Soc. 147, 2456 (2000)

    Article  Google Scholar 

  20. Kleiman-Shwarsctein, A., Hu, Y.S., Forman, A.J., Stucky, G.D., McFarland, E.W.: Electrodeposition of alpha-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. C 112, 15900 (2008)

    Article  Google Scholar 

  21. Debnath, N.C., Anderson, A.B.: Optical-spectra of ferrous and ferric oxides and the passive film - a molecular-orbital study. J. Electrochem. Soc. 129, 2169 (1982)

    Article  Google Scholar 

  22. Kennedy, J.H., Frese, K.W.: Flatband potentials and donor densities of polycrystalline alpha-Fe2O3 determined from Mott-Schottky plots. J. Electrochem. Soc. 125, 723 (1978)

    Article  Google Scholar 

  23. Dareedwards, M.P., Goodenough, J.B., Hamnett, A., Trevellick, P.R.: Electrochemistry and photoelectrochemistry of iron(III) oxide. J. Chem. Soc. Faraday Trans. 79, 2027 (1983)

    Article  Google Scholar 

  24. Catti, M., Valerio, G., Dovesi, R.: Theoretical-study of electronic, magnetic, and structural-properties of alpha-Fe2O3 (hematite). Phys. Rev. B 51, 7441 (1995)

    Article  Google Scholar 

  25. Velev, J., Bandyopadhyay, A., Butler, W.H., Sarker, S.: Electronic and magnetic structure of transition-metal-doped alpha-hematite. Phys. Rev. B 71, 205208 (2005)

    Article  Google Scholar 

  26. Butler, W.H., Bandyopadhyay, A., Srinivasan, R.: Electronic and magnetic structure of a 1000 K magnetic semiconductor: alpha-hematite (Ti). J. Appl. Phys. 93, 7882 (2003)

    Article  Google Scholar 

  27. Ma, Y., Johnson, P.D., Wassdahl, N., Guo, J., Skytt, P., Nordgren, J., Kevan, S.D., Rubensson, J.E., Böske, T., Eberhardt, W.: Electronic structures of alpha-Fe2O3 and Fe3O4 from O K-edge absorption and emission spectroscopy. Phys. Rev. B 48, 2109 (1993)

    Article  Google Scholar 

  28. Kennedy, J.H., Anderman, M., Shinar, R.: Photoactivity of polycrystalline alpha-Fe2O3 electrodes doped with group IVa elements. J. Electrochem. Soc. 128, 2371 (1981)

    Article  Google Scholar 

  29. McGregor, K.G., Calvin, M., Otvos, J.W.: Photoeffects in Fe2O3 sintered semiconductors. J. Appl. Phys. 50, 369 (1979)

    Article  Google Scholar 

  30. Turner, J.E., Hendewerk, M., Parmeter, J., Neiman, D., Somorjai, G.A.: The characterization of doped iron-oxide electrodes for the photodissociation of water – stability, optical, and electronic-properties. J. Electrochem. Soc. 131, 1777 (1984)

    Article  Google Scholar 

  31. Launay, J.C., Horowitz, G.: Crystal-growth and photo-electrochemical study of Zr-doped alpha-Fe2O3 single-crystal. J. Cryst. Growth 57, 118 (1982)

    Article  Google Scholar 

  32. Cherepy, N.J., Liston, D.B., Lovejoy, J.A., Deng, H.M., Zhang, J.Z.: Ultrafast studies of photoexcited electron dynamics in gamma- and alpha-Fe2O3 semiconductor nanoparticles. J. Phys. Chem. B 102, 770 (1998)

    Article  Google Scholar 

  33. Joly, A.G., Williams, J.R., Chambers, S.A., Xiong, G., Hess, W.P., Laman, D.M.: Carrier dynamics in alpha-Fe2O3 (0001) thin films and single crystals probed by femtosecond transient absorption and reflectivity. J. Appl. Phys. 99, 053521 (2006). doi:10.1063/1.2177426

    Article  Google Scholar 

  34. Ahmed, S.M., Leduc, J., Haller, S.F.: Photoelectrochemical and impedance characteristics of specular hematite. 1. Photoelectrochemical, parallel conductance, and trap rate studies. J. Phys. Chem. 92, 6655 (1988)

    Article  Google Scholar 

  35. Horowitz, G.: Capacitance voltage measurements and flat-band potential determination on Zr-doped alpha-Fe2O3 single-crystal electrodes. J. Electroanal. Chem. 159, 421 (1983)

    Article  Google Scholar 

  36. Morin, F.J.: Electrical properties of alpha-Fe2O3 and alpha-Fe2O3 containing titanium. Phys. Rev. 83, 1005 (1951)

    Article  Google Scholar 

  37. Morin, F.J.: Electrical properties of alpha-Fe2O3. Phys. Rev. 93, 1195 (1954)

    Article  Google Scholar 

  38. Bosman, A.J., Vandaal, H.J.: Small-polaron versus band conduction in some transition-metal oxides. Adv. Phys. 19, 1 (1970)

    Article  Google Scholar 

  39. Chang, R.H., Wagner, J.B.: Direct-current conductivity and iron tracer diffusion in hematite at high-temperatures. J. Am. Ceram. Soc. 55, 211 (1972)

    Article  Google Scholar 

  40. Goodenough, J.B.: Metallic oxides. Prog. Solid State Chem. 5, 145 (1971)

    Article  Google Scholar 

  41. Dimitrijevic, N.M., Savic, D., Micic, O.I., Nozik, A.J.: Interfacial electron-transfer equilibria and flat-band potentials of alpha-Fe2O3 and TiO2 colloids studied by pulse-radiolysis. J. Phys. Chem. 88, 4278 (1984)

    Article  Google Scholar 

  42. Nakau, T.: Electrical Conductivity of α-Fe2O3. J. Phys. Soc. Jpn. 15, 727 (1960). doi:10.1143/JPSJ.15.727

    Article  Google Scholar 

  43. Benjelloun, D., Bonnet, J.P., Doumerc, J.P., Launay, J.C., Onillon, M., Hagenmuller, P.: Anisotropy of the electrical-properties of iron-oxide alpha-Fe2O3. Mater. Chem. Phys. 10, 503 (1984)

    Article  Google Scholar 

  44. Rosso, K.M., Smith, D.M.A., Dupuis, M.: An ab initio model of electron transport in hematite (alpha-Fe2O3) basal planes. J. Chem. Phys. 118, 6455 (2003). doi:10.1063/1.1558534

    Article  Google Scholar 

  45. Shinar, R., Kennedy, J.H.: Photoactivity of doped alpha-Fe2O3 electrodes. Solar Energy Mater. 6, 323 (1982)

    Article  Google Scholar 

  46. Leygraf, C., Hendewerk, M., Somorjai, G.: The preparation and selected properties of Mg-doped para-type iron-oxide as a photo-cathode for the photoelectrolysis of water using visible-light. J. Solid State Chem. 48, 357 (1983)

    Article  Google Scholar 

  47. Sastri, M.V.C., Nagasubramanian, G.: Studies on ferric oxide electrodes for the photo-assisted electrolysis of water. Int. J. Hydrogen Energy 7, 873 (1982)

    Article  Google Scholar 

  48. Maruska, H.P., Ghosh, A.K.: Transition-metal dopants for extending the response of titanate photoelectrolysis anodes. Solar Energy Mater. 1, 237 (1979)

    Article  Google Scholar 

  49. Butler, M.A.: Photoelectrolysis and physical-properties of semiconducting electrode WO3. J. Appl. Phys. 48, 1914 (1977)

    Article  Google Scholar 

  50. Hardee, K.L., Bard, A.J.: Semiconductor electrodes 5. Application of chemically vapor-deposited iron-oxide films to photosensitized electrolysis. J. Electrochem. Soc. 123, 1024 (1976)

    Article  Google Scholar 

  51. Yeh, L.S.R., Hackerman, N.: Iron-oxide semiconductor electrodes in photoassisted electrolysis of water. J. Electrochem. Soc. 124, 833 (1977)

    Article  Google Scholar 

  52. Quinn, R.K., Nasby, R.D., Baughman, R.J.: Photoassisted electrolysis of water using single-crystal alpha-Fe2O3 anodes. Mater. Res. Bull. 11, 1011 (1976)

    Article  Google Scholar 

  53. Sanchez, C., Sieber, K.D., Somorjai, G.A.: The photoelectrochemistry of niobium doped alpha-Fe2O3. J. Electroanal. Chem. 252, 269 (1988)

    Article  Google Scholar 

  54. Itoh, K., Bockris, J.O.: Stacked thin-film photoelectrode using iron-oxide. J. Appl. Phys. 56, 874 (1984)

    Article  Google Scholar 

  55. Itoh, K., Bockris, J.O.: Thin-film photoelectrochemistry – iron-oxide. J. Electrochem. Soc. 131, 1266 (1984)

    Article  Google Scholar 

  56. Gärtner, W.W.: Depletion-layer photoeffects in semiconductors. Phys. Rev. 116, 84 (1959)

    Article  Google Scholar 

  57. Alexander, B.D., Kulesza, P.J., Rutkowska, L., Solarska, R., Augustynski, J.: Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18, 2298 (2008). doi:10.1039/b718644d

    Article  Google Scholar 

  58. Van de Krol, R., Liang, Y.Q., Schoonman, J.: Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18, 2311 (2008). doi:10.1039/b718969a

    Article  Google Scholar 

  59. Sapieszko, R.S., Matijevic, E.: Preparation of well-defined colloidal particles by thermal-decomposition of metal-chelates. 1. Iron-oxides. J. Colloid Interface Sci. 74, 405 (1980)

    Article  Google Scholar 

  60. Moser, J., Grätzel, M.: Photoelectrochemistry with colloidal semiconductors – laser studies of halide oxidation in colloidal dispersions of TiO2 and alpha-Fe2O3. Helv. Chim. Acta 65, 1436 (1982)

    Article  Google Scholar 

  61. Stramel, R.D., Thomas, J.K.: Photochemistry of iron-oxide colloids. J. Colloid Interface Sci. 110, 121 (1986)

    Article  Google Scholar 

  62. Kiwi, J., Grätzel, M.: Light-induced hydrogen formation and photo-uptake of oxygen in colloidal suspensions of alpha-Fe2O3. J. Chem. Soc. Faraday Trans. 83, 1101 (1987)

    Article  Google Scholar 

  63. Chatterjee, S., Sarkar, S., Bhattacharyya, S.N.: Size effect in the photochemical generation of hydrogen from water by colloidal Fe2O3 particles. J. Photochem. Photobiol. A 72, 183 (1993)

    Article  Google Scholar 

  64. Zeng, S.Y., Tang, K.B., Li, T.W., Liang, Z.H., Wang, D., Wang, Y.K., Qi, Y.X., Zhou, W.W.: Facile route for the fabrication of porous hematite nanoflowers: Its synthesis, growth mechanism, application in the lithium ion battery, and magnetic and photocatalytic properties. J. Phys. Chem. C 112, 4836 (2008). doi:10.1021/jp0768773

    Article  Google Scholar 

  65. Lian, S.Y., Wang, E.B., Gao, L., Wu, D., Song, Y.L., Xu, L.: Surfactant-assisted solvothermal preparation of submicrometer-sized hollow hematite particles and their photocatalytic activity. Mater. Res. Bull. 41, 1192 (2006). doi:10.1016/j.materresbull.2005.10.022

    Article  Google Scholar 

  66. Hu, X.L., Yu, J.C.: Continuous aspect-ratio tuning and fine shape control of monodisperse alpha-Fe2O3 nanocrystals by a programmed microwave-hydrothermal method. Adv. Funct. Mater. 18, 880 (2008). doi:10.1002/adfm.200700671

    Article  Google Scholar 

  67. Björksten, U., Moser, J., Grätzel, M.: Photoelectrochemical studies on nanocrystalline hematite films. Chem. Mater. 6, 858 (1994)

    Article  Google Scholar 

  68. Qian, X., Zhang, X., Bai, Y., Li, T., Tang, X., Wang, E., Dong, S.: Photoelectrochemical characteristics of alpha-Fe2O3 nanocrystalline semiconductor thin film. J. Nanopart. Res. 2, 191 (2000)

    Article  Google Scholar 

  69. Gou, X.L., Wang, G.X., Kong, X.Y., Wexler, D., Horvat, J., Yang, J., Park, J.: Flutelike porous hematite nanorods and branched nanostructures: Synthesis, characterisation and application for gas-sensing. Chem. Eur. J. 14, 5996 (2008). doi:10.1002/chem.200701705

    Article  Google Scholar 

  70. Hu, X.L., Yu, J.C., Gong, J.M., Li, Q., Li, G.S.: Alpha-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater. 19, 2324 (2007). doi:10.1002/adma.200602176

    Article  Google Scholar 

  71. Hida, Y., Kozuka, H.: Photoanodic properties of sol-gel-derived iron oxide thin films with embedded gold nanoparticles: effects of polyvinylpyrrolidone in coating solutions. Thin Solid Films 476, 264 (2005). doi:10.1016/j.tsf.2004.09.063

    Article  Google Scholar 

  72. Watanabe, A., Kozuka, H.: Photoanodic properties of sol-gel-derived Fe2O3 thin films containing dispersed gold and silver particles. J. Phys. Chem. B 107, 12713 (2003). doi:10.1021/jp0303568

    Article  Google Scholar 

  73. Borse, P.H., Jun, H., Choi, S.H., Hong, S.J., Lee, J.S.: Phase and photoelectrochemical behavior of solution-processed Fe2O3 nanocrystals for oxidation of water under solar light. Appl. Phys. Lett. 93 (2008). doi:173103 10.1063/1.3005557

    Google Scholar 

  74. Souza, F.L., Lopes, K.P., Nascente, P.A.P., Leite, E.R.: Nanostructured hematite thin films produced by spin-coating deposition solution: application in water splitting. Sol. Energy Mater. Sol. Cells 93, 362 (2009). doi:10.1016/j.solmat.2008.11.049

    Article  Google Scholar 

  75. Yue, W.B., Zhou, W.Z.: Crystalline mesoporous metal oxide. Prog. Nat. Sci. 18, 1329 (2008). doi:10.1016/j.pnsc.2008.05.010

    Article  Google Scholar 

  76. Jiao, F., Harrison, A., Jumas, J.C., Chadwick, A.V., Kockelmann, W., Bruce, P.G.: Ordered mesoporous Fe2O3 with crystalline walls. J. Am. Chem. Soc. 128, 5468 (2006). doi:10.1021/ja0584774

    Article  Google Scholar 

  77. Vayssieres, L., Beermann, N., Lindquist, S.E., Hagfeldt, A.: Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to iron(III) oxides. Chem. Mater. 13, 233 (2001)

    Article  Google Scholar 

  78. Fan, Z.Y., Wen, X.G., Yang, S.H., Lu, J.G.: Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors. Appl. Phys. Lett. 87, 013113 (2005). doi:10.1063/1.1977203

    Article  Google Scholar 

  79. Lindgren, T., Wang, H.L., Beermann, N., Vayssieres, L., Hagfeldt, A., Lindquist, S.E.: Aqueous photoelectrochemistry of hematite nanorod array. Sol. Energy Mater. Sol. Cells 71, 231 (2002)

    Article  Google Scholar 

  80. Peng, L.L., Xie, T.F., Fan, Z.Y., Zhao, Q.D., Wang, D.J., Zheng, D.: Surface photovoltage characterization of an oriented alpha-Fe2O3 nanorod array. Chem. Phys. Lett. 459, 159 (2008). doi:10.1016/j.cplett.2008.05.036

    Article  Google Scholar 

  81. Fu, Y.Y., Chen, J., Zhang, H.: Synthesis of Fe2O3 nanowires by oxidation of iron. Chem. Phys. Lett. 350, 491 (2001)

    Article  Google Scholar 

  82. Wang, R.M., Chen, Y.F., Fu, Y.Y., Zhang, H., Kisielowski, C.: Bicrystalline hematite nanowires. J. Phys. Chem. B 109, 12245 (2005). doi:10.1021/jp051197q

    Article  Google Scholar 

  83. Wen, X.G., Wang, S.H., Ding, Y., Wang, Z.L., Yang, S.H.: Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires. J. Phys. Chem. B 109, 215 (2005). doi:10.1021/jp0461448

    Article  Google Scholar 

  84. Yu, T., Zhu, Y.W., Xu, X.J., Yeong, K.S., Shen, Z.X., Chen, P., Lim, C.T., Thong, J.T.L., Sow, C.H.: Substrate-friendly synthesis of metal oxide nanostructures using a hotplate. Small 2, 80 (2006). doi:10.1002/smll.200500234

    Article  Google Scholar 

  85. Han, Q., Xu, Y.Y., Fu, Y.Y., Zhang, H., Wang, R.M., Wang, T.M., Chen, Z.Y.: Defects and growing mechanisms of alpha-Fe2O3 nanowires. Chem. Phys. Lett. 431, 100 (2006). doi:10.1016/j.cplett.2006.09.027

    Article  Google Scholar 

  86. Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A.: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191 (2005). doi:10.1021/nl048301k

    Article  Google Scholar 

  87. Prakasam, H.E., Varghese, O.K., Paulose, M., Mor, G.K., Grimes, C.A.: Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization. Nanotechnol. 17, 4285 (2006). doi:10.1088/0957-4484/17/17/001

    Article  Google Scholar 

  88. Rangaraju, R.R., Panday, A., Raja, K.S., Misra, M.: Nanostructured anodic iron oxide film as photoanode for water oxidation. J. Phys. D: Appl. Phys. 42, 135303 (2009). doi:10.1088/0022-3727/42/13/135303

    Article  Google Scholar 

  89. Mor, G.K., Prakasam, H.E., Varghese, O.K., Shankar, K., Grimes, C.A.: Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett. 7, 2356 (2007). doi:10.1021/nl0710046

    Article  Google Scholar 

  90. Mohapatra, S.K., John, S.E., Banerjee, S., Misra, M.: Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem. Mater. 21, 3048 (2009)

    Article  Google Scholar 

  91. Hu, Y.S., Kleiman-Shwarsctein, A., Forman, A.J., Hazen, D., Park, J.N., McFarland, E.W.: Pt-doped alpha-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mater. 20, 3803 (2008). doi:10.1021/cm800144q

    Article  Google Scholar 

  92. Spray, R.L., Choi, K.-S.: Photoactivity of transparent nanocrystalline Fe2O3 electrodes prepared via anodic electrodeposition. Chem. Mater. 21, 3701 (2009)

    Article  Google Scholar 

  93. Murthy, A.S.N., Reddy, K.S.: Photoelectrochemical behavior of undoped ferric-oxide (alpha-Fe2O3) electrodes prepared by spray pyrolysis. Mater. Res. Bull. 19, 241 (1984)

    Article  Google Scholar 

  94. Duret, A., Grätzel, M.: Visible light-induced water oxidation on mesoscopic alpha-Fe2O3 films made by ultrasonic spray pyrolysis. J. Phys. Chem. B 109, 17184 (2005). doi:10.1021/jp044127c

    Article  Google Scholar 

  95. Kumari, S., Tripathi, C., Singh, A.P., Chauhan, D., Shrivastav, R., Dass, S., Satsangi, V.R.: Characterization of Zn-doped hematite thin films for photoelectrochemical splitting of water. Curr. Sci. 91, 1062 (2006)

    Google Scholar 

  96. Liang, Y.Q., Enache, C.S., Van de Krol, R.: Photoelectrochemical characterization of sprayed alpha-Fe2O3 thin films: influence of Si doping and SnO2 interfacial layer. Int. J. Photoenergy 739864 (2008). doi:10.1155/2008/739864

    Google Scholar 

  97. Satsangi, V.R., Kumari, S., Singh, A.P., Shrivastav, R., Dass, S.: International Workshop on Hydrogen Energy – Production Storage and Application, Jaipur, India, 2006

    Google Scholar 

  98. Khan, S.U.M., Akikusa, J.: Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes. J. Phys. Chem. B 103, 7184 (1999)

    Article  Google Scholar 

  99. Hagglund, C., Grätzel, M., Kasemo, B.: Comment on “Efficient photochemical water splitting by a chemically modified n-TiO2” – (II). Science 301, 1673B (2003)

    Article  Google Scholar 

  100. Sartoretti, C.J., Alexander, B.D., Solarska, R., Rutkowska, W.A., Augustynski, J., Cerny, R.: Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. J. Phys. Chem. B 109, 13685 (2005)

    Article  Google Scholar 

  101. Cesar, I.: Thesis results, Chimie et Génie Chimique Ecole Polytechnique Fédérale de Lausanne, Lausanne (2007)

    Google Scholar 

  102. Cesar, I., Kay, A., Martinez, J.A.G., Grätzel, M.: Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping. J. Am. Chem. Soc. 128, 4582 (2006). doi:10.1021/ja060292p

    Article  Google Scholar 

  103. Orthner, H.R., Roth, P.: Formation of iron oxide powder in a hot-wall flow reactor – effect of process conditions on powder characteristics. Mater. Chem. Phys. 78, 453 (2002)

    Article  Google Scholar 

  104. Wen, J.Z., Goldsmith, C.F., Ashcraft, R.W., Green, W.H.: Detailed kinetic modeling of iron nanoparticle synthesis from the decomposition of Fe(CO)5. J. Phys. Chem. C 111, 5677 (2007). doi:10.1021/jp066579q

    Article  Google Scholar 

  105. Kay, A., Cesar, I., Grätzel, M.: New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. J. Am. Chem. Soc. 128, 15714 (2006). doi:10.1021/ja064380l

    Article  Google Scholar 

  106. Glasscock, J.A., Barnes, P.R.F., Plumb, I.C., Savvides, N.: Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 111, 16477 (2007). doi:10.1021/jp0745561

    Article  Google Scholar 

  107. Saretni-Yarahmadi, S., Wijayantha, K.G.U., Tahir, A.A., Vaidhyanathan, B.: Nanostructured alpha-Fe2O3 electrodes for solar driven water splitting: effect of doping agents on preparation and performance. J. Phys. Chem. C 113, 4768 (2009). doi:10.1021/jp808453z

    Article  Google Scholar 

  108. Saremi-Yarahmadi, S., Tahir, A.A., Vaidhyanathan, B., Wijayantha, K.G.U.: Fabrication of nanostructured alpha-Fe2O3 electrodes using ferrocene for solar hydrogen generation. Mater. Lett. 63, 523 (2009). doi:10.1016/j.matlet.2008.11.011

    Article  Google Scholar 

  109. Grätzel, M.: Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem. Lett. 34, 8 (2005). doi:10.1246/Cl.2005.8

    Article  Google Scholar 

  110. Ernst, K., Belaidi, A., Konenkamp, R.: Solar cell with extremely thin absorber on highly structured substrate. Semicond. Sci. Technol. 18, 475 (2003)

    Article  Google Scholar 

  111. Grätzel, M., Augustynski, J.: Tandem cell for water cleavage by visable light. (2000). PCT Int. Appl., WO 2001002624 (2001)

    Google Scholar 

  112. Brillet, J., Cornuz, M., Le Formal, F., Yum, J.H., Grätzel, M., Sivula, K.: Examining architectures of photoanode-photovoltaic tandem cells for solar water splitting. J. Mater. Res. 25, 17 (2010). doi:10.1557/JMR.2010.0009

    Article  Google Scholar 

  113. Hu, Y.S., Kleiman-Shwarsctein, A., Stucky, G.D., McFarland, E.W.: Improved photoelectrochemical performance of Ti-doped alpha-Fe2O3 thin films by surface modification with fluoride. Chem. Commun. 19, 2652 (2009). doi:10.1039/b901135h

    Article  Google Scholar 

  114. Brunschwig, B.S., Chou, M.H., Creutz, C., Ghosh, P., Sutin, N.: Mechanisms of water oxidation to oxygen – cobalt(IV) as an intermediate in the aquocobalt(II)-catalyzed reaction. J. Am. Chem. Soc. 105, 4832 (1983)

    Article  Google Scholar 

  115. Kanan, M.W., Nocera, D.G.: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072 (2008). doi:10.1126/science.1162018

    Article  Google Scholar 

  116. Zhong, D.K., Sun, J.W., Inumaru, H., Gamelin, D.R.: Solar water oxidation by composite catalyst/alpha-Fe2O3 photoanodes. J. Am. Chem. Soc. 131, 6086 (2009). doi:10.1021/ja9016478

    Article  Google Scholar 

  117. Eggleston, C.M., Shankle, A.J.A., Moyer, A.J., Cesar, I., Grätzel, M.: Anisotropic photocatalytic properties of hematite. Aquat. Sci. 71, 151 (2009). doi:10.1007/s00027-009-9191-5

    Article  Google Scholar 

  118. Yanina, S.V., Rosso, K.M.: Linked reactivity at mineral–water interfaces through bulk crystal conduction. Science 320, 218 (2008). doi:10.1126/science.1154833

    Article  Google Scholar 

  119. Gualtieri, A.F., Venturelli, P.: In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction. Am. Mineral. 84, 895 (1999)

    Google Scholar 

  120. Pailhe, N., Wattiaux, A., Gaudon, M., Demourgues, A.: Impact of structural features on pigment properties of alpha-Fe2O3 haematite. J. Solid State Chem. 181, 2697 (2008). doi:10.1016/j.jssc.2008.06.049

    Article  Google Scholar 

  121. Chernyshova, I.V., Hochella, M.F., Madden, A.S.: Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys. Chem. Chem. Phys. 9, 1736 (2007). doi:10.1039/b618790k

    Article  Google Scholar 

  122. Woodhouse, M., Parkinson, B.A.: Combinatorial discovery and optimization of a complex oxide with water photoelectrolysis activity. Chem. Mater. 20, 2495 (2008)

    Article  Google Scholar 

  123. Woodhouse, M., Parkinson, B.A.: Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem. Soc. Rev. 38, 197 (2009). doi:10.1039/b719545c

    Article  Google Scholar 

  124. Jang, J.S., Lee, J., Ye, H., Fan, F.R.F., Bard, A.J.: Rapid screening of effective dopants for Fe2O3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties. J. Phys. Chem. C 113, 6719 (2009). doi:10.1021/jp8109429

    Article  Google Scholar 

  125. Sivula, K., Le Formal, F., Grðtzel, M.: Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes. Chemsuschem 4, 432 (2011). doi: 10.1002/cssc.201000416

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Sivula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sivula, K. (2012). Nanostructured α-Fe2O3 Photoanodes. In: van de Krol, R., Grätzel, M. (eds) Photoelectrochemical Hydrogen Production. Electronic Materials: Science & Technology, vol 102. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1380-6_4

Download citation

Publish with us

Policies and ethics