Skip to main content

Leucite Glass-Ceramics

  • Chapter
  • First Online:
Glasses and Glass Ceramics for Medical Applications

Abstract

The key variables in the design of a medical glass-ceramic are glass composition, phase assemblage, and the crystalline microstructure, which are the driving factor for the different properties. The phase assemblage (the types of crystals and the proportion of crystals to glass in the glass-ceramic) is responsible for almost all of the physical and chemical properties, including the functional, microstructural, thermal, mechanical, and chemical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Brodkin, D., Panzera, C.: Cubic leucite-containing dental porcelains. US-Patent 6,090,194, 2000

    Google Scholar 

  • Brodkin, D.G., Panzera, C.: Machinable ceramics compositions and mill blanks thereof. US-Patent 035215 (A1), 2010

    Google Scholar 

  • Brodkin, D., Panzera, C., Panzera, P.: Cubic leucite containing dental ceramics. WO-Patent 1891099, 1999

    Google Scholar 

  • Brodkin, D., Panzera, C., Panzera, P., Pruden, J., Kaiser, M., Brightly, R.: Dental restorations. US Patent 6,155,830, 2000

    Google Scholar 

  • Brodkin, D., Panzera, C., Panzera, P.: Machinable leucite-containing porcelain compositions and methods of manufacture. US Patent 6,133,174, 2000

    Google Scholar 

  • Brodkin, D., Panzera, C., Panzera, P.: Dental porcelains. US-Patent 6,428,614, 2002

    Google Scholar 

  • Brodkin, D., Gamarnik, M.: Dental restorations using nanocrystalline materials and methods of manufacture. US-Patent 7,655,586, 2010

    Google Scholar 

  • Burk, B., Burnett, A.: Leucite-containing porcelains and method of making same. US-Patent 4,101,330, 1978

    Google Scholar 

  • Burk, B., Burnett A.P.: Leucite-containing porcelains and method of making same. US-Patent 4,101,330, 1978

    Google Scholar 

  • Burk, B., Windsor, C.T., Burnett, A.P., Milford, D.E.: Leucite-containing porcelains and method of making same. US-Patent 4,101,330, 1978

    Google Scholar 

  • Christopher, C. Banasiak, S.: Ceramics system for a dental prosthesis. WO-Patent 148558 (A2), 2009

    Google Scholar 

  • Christopher, C. Banasiak, S.: Translucent veneering for a dental prosthesis formed by a press to metal process. US-Patent 274995 (A1), 2009

    Google Scholar 

  • Cummings, K.M., Rolf, J.C., Rosenflanz, A., Rusin, R., Swanson J.: Use of ceramics in dental and orthodontic applications. US-Patent 7,022,173, 2006

    Google Scholar 

  • Denry, I.L.: Low expansion feldspathic ceramics. US-Patent 5994246, 1997

    Google Scholar 

  • Denry, I.L., Mackert, J.R., Holloway, J.A., Rosenstiel, S.F.: Effect of cubic leucite stabilization on the flexural strength of Feldspathic dental ceramics. J. Dent. Res. 75(12), 1928–1935 (1996)

    Article  CAS  Google Scholar 

  • Denry, I.L., Holloway, J.A., Rosenstiel, S.F.: Crystallization kinetics of a low-expansion feldspar glass for dental applications. J. Biomed. Mater. Res. 41(3), 398–404 (1998)

    Article  CAS  Google Scholar 

  • Denry, L., Holloway, J., Colijn, H.: Phase transformations in a leucite-reinforced pressable dental ceramic. J. Biomed. Mater. Res. 54(3), 351–359 (2001)

    Article  CAS  Google Scholar 

  • El-Meliegy, E.M.: Preparation and characterization of low fusion leucite dental ceramics. Br. Ceram. Trans. 102(6), 261–265 (2003)

    Article  CAS  Google Scholar 

  • El-Meliegy, E.M.: Low fusion fluorophlogopite-leucite containing porcelain. Br. Ceram. Trans. 103(5), 231–234 (2004)

    Article  CAS  Google Scholar 

  • Frank, M., Schweiger, M., Rheinberger, V., Hoeland, W.: Leucite-containing phosphosilicate glass-ceramic. US-Patent 5,698,019, 1997

    Google Scholar 

  • Garcia-Guinea, J., Correcher, V., Rodriguez-Badiola, E.: Analysis of luminescence spectra of leucite (KAISiO4). Analyst 126(6), 911–916 (2001)

    Article  CAS  Google Scholar 

  • Hermansson, L., Carlsson, R.: On the crystallization of the glassy phase in whitewares. Trans. J. Br. Ceram. Soc. 77, 32–35 (1978)

    CAS  Google Scholar 

  • Hermansson, L., Kraft, L., Engqvist, H., Hermansson, I., Ahnfelt, N., Gomez-Ortega, G.: Powdered material and ceramic material manufactured therefrom. US-Patent 7,351,281, 2008

    Google Scholar 

  • Holand, W., Frank, M., Rheinberger, V.: Surface crystallization of leucite in glasses. J. Non Cryst. Solids 180, 292–307 (1995)

    Article  Google Scholar 

  • Holand, W., Rheinberger, V., Apel, E., Hoen, C., Holand, M., Dommann, A., Obrecht, M., Graf-Hausner, U.: Clinical applications of glass-ceramics in dentistry. J. Mater. Sci. Mater. Med. 17, 1037–1042 (2006)

    Article  Google Scholar 

  • Hornor, J.A.: Low-fusing temperature porcelain. US-Patent 5,552,350, 1996

    Google Scholar 

  • Kacicz; J. M., Fonvielle, Frank P.: Leucite porcelain. US-Patent 4,604,366, 1986

    Google Scholar 

  • Kamiya, T., Inoue, M., Inada, H.: Dental porcelain material preventing yellow coloration and method for producing same. US-Patent 5,466,285, 1995

    Google Scholar 

  • Kim, S., Lee, Y., Lim, B., Rhee, S., Yang, H.: Metameric effect between dental ceramics and ceramics repairing resin composite. Dent. Mater. 23(3), 374–379 (2007)

    Article  CAS  Google Scholar 

  • Lee, Y.K., Powers, J.M.: Metameric effect between resin composite and dentin. Dent. Mater. 21, 971–976 (2005)

    Article  CAS  Google Scholar 

  • MacDowell, J.F., Beall, G.H.: Immiscibility and crystallization in Al2O3–SiO2 glasses. J Am Ceram Soc 52(1), 17–25 (1969)

    Article  CAS  Google Scholar 

  • Mazzi, F., Galli, E., Gottardi, G.: The crystal structure of tetragonal leucite. Am. Miner. 61, 108–115 (1976)

    CAS  Google Scholar 

  • Neuber, J.: Dental crowns. US-Patent 290019 (A1), 2006

    Google Scholar 

  • O’brien, J.: Methods for determining the proper coloring for a tooth replica. US-Patent 4654794, 1987

    Google Scholar 

  • Prasad, Vaidyanathan, T.K.: “Crystallization of cubic leucite by composition additives”, 19th Annual Session, American Association of Dental Research, March 9, 1990

    Google Scholar 

  • Prasad, A.: Metallization of ceramic restorations. US-Patent 6,627,248, 2003

    Google Scholar 

  • Rouf, M.A., Hermansson, L., Carlsson, R.: Crystallization of glasses in the primary plan field of leucite in the K2O–Al2O3–SiO2 system. Trans. J. Br. Ceram. Soc. 77, 36–39 (1978)

    CAS  Google Scholar 

  • Sago, S., Sakakibara, T.: Dental ceramics. JP-Patent 190215 (A), (2007)

    Google Scholar 

  • Salomonson, J., Yanez, J.: Method for making ceramic artificial dental bridges. US-Patent 7,600,398, 2006

    Google Scholar 

  • Sean, R.: Method for forming polychromatic pressable ceramics dental restoration. US-Patent 70191 A1, 2008

    Google Scholar 

  • Sekino, M., Shioda, M.: Dental ceramics composition. JP-Patent 137847 (A), 2009

    Google Scholar 

  • Shioda, M., Sekino M.: Dental ceramics material composition. JP-Patent 308415 (A), 2007

    Google Scholar 

  • Shirakura, A., Lee, H., Geminiani, A., Ercoli, C., Feng, C.: The influence of veneering ceramics thickness of all-ceramic and metal ceramic crowns on failure resistance after cyclic loading. J. Prosthet. Dent. 101, 119–127 (2009)

    Article  CAS  Google Scholar 

  • Tagami, J., Ikeda, M.: Dental restoration and method for producing the same, and ceramics paste for dental restoration. US-Patent 215010 (A1), 2009

    Google Scholar 

  • Taylor, D.: Thermal expansion data XV. Complex oxides with the leucite structure and frameworks based on six-membered rings of tetrahedra. Journal 90(6), 197–204 (1991)

    CAS  Google Scholar 

  • Taylor, D., Henderson, C.M.B.: The thermal expansion of the leucite group of minerals. Am. Miner. 53, 1476–1489 (1968)

    CAS  Google Scholar 

  • Yi, Z., Rao, P., Lu, M., Wu, J.: Mechanical properties of dental ceramics with different leucite particle sizes. J. Am. Ceram. Soc. 91(2), 527–534 (2008)

    Article  Google Scholar 

  • Yu, H.Y., Ca, Z.B., Ren, P.D., Zhu, M.H., Zhou, Z.R.: Friction and wear behaviour of dental feldspathic ceramics. Wear 26(5–6), 611–621 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad El-Meliegy .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

El-Meliegy, E., van Noort, R. (2012). Leucite Glass-Ceramics. In: Glasses and Glass Ceramics for Medical Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1228-1_10

Download citation

Publish with us

Policies and ethics