Skip to main content

Quantum Transport Formalisms

  • Chapter
  • First Online:
Physics of Nanostructured Solid State Devices
  • 1867 Accesses

Abstract

This chapter introduces some popular quantum transport formalisms such as the scattering matrix formalism, the Landau–Vlasov equation (which can be viewed as a quantum-mechanical equivalent of the collisionless BTE), the nonequilibrium Green’s function approach, the Wigner distribution function, the Tsu–Esaki formalism, and the Landauer–Büttiker approach for linear response transport. Applications of these formalisms are presented in Chap. 9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sometimes the Boltzmann transport model is called “semi-classical” instead of “classical”. This is only because the scattering rate \(S(\vec{k},\vec{k}^{\prime})\) is calculated using Fermi’s Golden Rule or an equivalent quantum-mechanical prescription. Other than that, the Boltzmann model is entirely classical.

  2. 2.

    It is very important to understand that “mesoscopic” does not mean that the device is smaller than a particular dimension (like 10 or 100 nm), but rather it is small enough to exhibit quantum-mechanical effects.

  3. 3.

    See, for example, Supriyo Datta, “Nanoscale device modeling: The Green’s function method”, Superlat. Microstruct., Vol. 28, 253 (2000).

  4. 4.

    We deal with transmission probabilities rather than complex transmission amplitudes since electrons are phase-incoherent in the leads. Since different modes are mutually orthogonal in the leads, we should add the transmission probabilities and understand that there is no interference between the transmission amplitudes of different modes within the leads.

  5. 5.

    The region is, however, long enough that the probability of an evanescent mode tunneling through it is virtually zero.

  6. 6.

    Whenever we mention 4-probe Landauer resistance, we tacitly imply that the probes are weakly coupled to the device so that the 4-probe formula is valid.

  7. 7.

    The quantity ε p, q is of course found from the geometry and transverse dimensions of the leads. For example, if the cross-section of the leads is a rectangle of dimensions W y and W z , then ε p, q  = ( 2 ∕ 2m l )[(pπ ∕ W y )2 + (qπ ∕ W z )2].

  8. 8.

    The matrix I is the N d ×N d identity matrix, where N d is the number of modes in the device, and {0} is a null column vector of size N d .

References

  1. N. Bohr, Naturwissenschaften, 16, 245 (1928).

    Article  MATH  Google Scholar 

  2. B-G Englert, “Fringe visibility and which-way information: An inequality”, Phys. Rev. Lett., 77, 2154 (1996).

    Google Scholar 

  3. J. C. Bose, in Collected Physical Papers, (Longmans and Green, London, 1927), pp. 44-49.

    Google Scholar 

  4. P. Ghose, D. Home and G. S. Agarwal, “An experiment to throw more light on light”, Phys. Lett. A., 153, 403 (1991).

    Article  Google Scholar 

  5. Y. Mizobuchi and Y. Ohtake, “An experiment to throw more light on light”, Phys. Lett. A., 168, 1, (1992).

    Article  Google Scholar 

  6. S. Rangwala and S. M. Roy, “Wave behavior and non-complementary particle behavior in the same experiment”, Phys. Lett. A., 190, 1 (1994).

    Article  Google Scholar 

  7. A. J. Leggett, in Nanostructure Physics and Fabrication. Eds. M. A. Reed and W. P. Kirk, (Academic Press, Boston, 1989). p. 31.

    Google Scholar 

  8. A. D. Stone, “Magnetoresistance fluctuations in mesoscopic wires and rings”, Phys. Rev. Lett., 54, 2692 (1985).

    Article  Google Scholar 

  9. J. T. Edwards and D. J. Thouless, “Numerical studies of localization in disordered systems”, J. Phys. C, 5, 807 (1972).

    Article  Google Scholar 

  10. P. A. Lee and A. D. Stone, “Universal fluctuations in metals”, Phys. Rev. Lett., 55, 1622-1625 (1985).

    Article  Google Scholar 

  11. R. A. Webb, in Nanostructure Physics and Fabrication. Eds. M. A. Reed and W. P. Kirk, (Academic Press, Boston, 1989). p. 43.

    Google Scholar 

  12. B. J. F. Lin, M. A. Paalanen, A. C. Gossard and D. C. Tsui, “Weak localization of two-dimensional electrons in GaAs-Al x Ga1 − x As heterostructures”, Phys. Rev. B., 29, 927 (1983).

    Article  Google Scholar 

  13. S. Chaudhuri, S. Bandyopadhyay and M. Cahay, “Current, potential, electric field, and Fermi carrier distributions around localized elastic scatterers in phase-coherent quantum magnetotransport”, Phys. Rev. B., 47, 12649 (1993).

    Article  Google Scholar 

  14. R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics, Vol. III, (Addison-Wesley, Reading, 1965).

    MATH  Google Scholar 

  15. A. M. Kriman, N. C. Kluksdahl and D. K. Ferry, “Scattering states and distribution functions for microstructures”, Phys. Rev. B., 36, 5953 (1987).

    Article  Google Scholar 

  16. M. Cahay, M. McLennan and S. Datta, “Conductance of an array of elastic scatterers: A scattering matrix approach”, Phys. Rev. B., 37, 10125 (1988).

    Article  Google Scholar 

  17. S. Uryu and T. Ando, “Electronic states in anti-dot lattices: Scattering matrix formalism”, Phys. Rev. B., 53, 13613 (1996).

    Article  Google Scholar 

  18. H. Rob Frohne, M. J. McLennan and S. Datta, “An efficient method for the analysis of electron waveguides”, J. Appl. Phys., 66, 2699 (1989).

    Article  Google Scholar 

  19. R. Frohne and S. Datta, “Electron transfer between regions with different confining potentials”, J. Appl. Phys., 64, 4086 (1988).

    Article  Google Scholar 

  20. P. F. Bagwell, “Evanescent modes and scattering in quasi-one-dimensional wires”, Phys. Rev. B., 41, 10354 (1990).

    Article  Google Scholar 

  21. P. F. Bagwell and T. P. Orlando, “Landauer’s conductance formula and its generalization to finite voltages”, Phys. Rev. B., 40, 1456 (1989).

    Article  Google Scholar 

  22. B. J. Van Weees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. Van der Marel and C. T. Foxon, “Quantized conductance of point contacts in a two-dimensional electron gas”, Phys. Rev. Lett., 60, 848 (1988).

    Article  Google Scholar 

  23. D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie and D. A. C. Jones, “One dimensional transport and the quantization of ballistic resistance”, J. Phys. C: Solid State Phys., 21, L209 (1988).

    Article  Google Scholar 

  24. K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace and D. A. Ritchie, “Possible spin polarization in a one-dimensional electron gas”, Phys. Rev. Lett., 77, 135 (1996).

    Article  Google Scholar 

  25. M. Büttiker, “Four-terminal phase-coherent conductance”, Phys. Rev. Lett., 57, 1761 (1986).

    Article  Google Scholar 

  26. R. Landauer, “Spatial variation of currents and fields due to localized scatterers in metallic conduction”, IBM J. Res. Develop., 1, 223 (1957).

    Article  MathSciNet  Google Scholar 

  27. R. Landauer, “Electrical resistance of disordered one-dimensional lattices”, Philos. Mag., 21, 863 (1970).

    Article  Google Scholar 

  28. E. M. Economou and C. M. Soukoulis, “Static conductance and scaling theory of localization in one dimension”, Phys. Rev. Lett., 46, 618 (1981).

    Article  Google Scholar 

  29. D. S. Fisher and P. A. Lee, “Relation between conductivity and transmission matrix”, Phys. Rev. B., 23, 6851 (1981).

    Article  MathSciNet  Google Scholar 

  30. R. Landauer, “Can a length of perfect conductor have a resistance?” Phys. Lett. A, 85, 91 (1981).

    Article  Google Scholar 

  31. H. L. Engquist and P. W. Anderson, “Definition and measurement of the electrical and thermal resistances”, Phys. Rev. B., 24, 1151 (1981).

    Article  Google Scholar 

  32. M. Büttiker, “Symmetry of electrical conduction”, IBM J. Res. Develop., 32, 317 (1988).

    Article  Google Scholar 

  33. Y. Imry, in Directions in Condensed Matter Physics, Vol. 1, Eds. G. Grinstein and G. Mazenko, (World Scientific, Singapore, 1986).

    Google Scholar 

  34. S. Datta, Electronic Transport in Mesoscopic Systems, (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  35. M. Cahay and S. Bandyopadhyay, “Properties of the Landauer resistance of finite repeated structures”, Phys. Rev. B., 42, 5100 (1990).

    Article  Google Scholar 

  36. L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, (Addison-Wesley, Redwood City, 1989).

    Google Scholar 

  37. S. Datta, “Quantum devices”, Superlat. Microstruct., 6, 83 (1989).

    Article  Google Scholar 

  38. M. Büttiker, Y. Imry and M. Ya Azbel, “Quantum oscillations in one-dimensional normal metal rings”, Phys. Rev. A., 30, 1982 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bandyopadhyay, S. (2012). Quantum Transport Formalisms. In: Physics of Nanostructured Solid State Devices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1141-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1141-3_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1140-6

  • Online ISBN: 978-1-4614-1141-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics