Skip to main content

Dendritic Cell–Biomaterial Interactions: Implications for the Onset and Development of the Foreign Body Response

  • Chapter
  • First Online:
Biomaterials Associated Infection

Abstract

Biomaterials are used in several clinical applications. Yet they often induce a strong immune response that can lead to implant malfunction and replacement. Thus, it is of crucial importance to deeply understand the biological response to biomaterials. Here, we focus on the molecular mechanisms underlying biomaterial–dendritic cell (DC) interactions. Biomaterials regulate DC adhesion via podosomes in a β2 integrin-dependent manner. Moreover, they primarily affect DC phenotype and function by impinging on multiple Toll-like receptor signaling pathways. By putting biomaterial–DC interactions (and their consequences) in the context of the foreign body response (FBR), we propose that DCs, whose function has been altered by biomaterials, could be engaged in multiple juxtacrine and paracrine interactions with other immune cells including macrophages and neutrophils. Through this complex intercellular network, DCs could affect the immune response at the implantation site initiating (or sustaining) the series of events leading to the FBR. The detailed knowledge of biomaterial–DC interactions could be exploited to design more inert biopolymers, thus minimizing the FBR or biomaterials that elicit controlled and specific immune reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86–100.

    Article  CAS  Google Scholar 

  2. Kenneth WW. A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J Diabetes Sci Technol. 2008; 2(5):768–77.

    Google Scholar 

  3. Bonfield TL, Colton E, Marchant RE, Anderson JM. Cytokine and growth factor production by monocytes/macrophages on protein preadsorbed polymers. J Biomed Mater Res. 1992;26(7): 837–50.

    Article  CAS  Google Scholar 

  4. Anderson JM, Ziats NP, Azeez A, Brunstedt MR, Stack S, Bonfield TL. Protein adsorption and macrophage activation on polydimethylsiloxane and silicone rubber. J Biomater Sci Polym Ed. 1995;7(2):159–69.

    Article  CAS  Google Scholar 

  5. Jones JA, Dadsetan M, Collier TO, Ebert M, Stokes KS, Ward RS, et al. Macrophage behavior on surface-modified polyurethanes. J Biomater Sci Polym Ed. 2004;15(5):567–84.

    Article  CAS  Google Scholar 

  6. Yang D, Jones KS. Effect of alginate on innate immune activation of macrophages. J Biomed Mater Res A. 2009;90(2):411–8.

    Google Scholar 

  7. Sethi RK, Neavyn MJ, Rubash HE, Shanbhag AS. Macrophage response to cross-linked and conventional UHMWPE. Biomaterials. 2003;24(15):2561–73.

    Article  CAS  Google Scholar 

  8. Refai AK, Textor M, Brunette DM, Waterfield JD. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J Biomed Mater Res A. 2004;70(2):194–205.

    Article  Google Scholar 

  9. Li Y, Schutte RJ, Abu-Shakra A, Reichert WM. Protein array method for assessing in vitro biomaterial-induced cytokine expression. Biomaterials. 2005;26(10):1081–5.

    Article  Google Scholar 

  10. Brodbeck WG, Nakayama Y, Matsuda T, Colton E, Ziats NP, Anderson JM. Biomaterial surface chemistry dictates adherent monocyte/macrophage cytokine expression in vitro. Cytokine. 2002;18(6):311–9.

    Article  CAS  Google Scholar 

  11. Brodbeck WG, Patel J, Voskerician G, Christenson E, Shive MS, Nakayama Y, et al. Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo. Proc Natl Acad Sci U S A. 2002;99(16):10287–92.

    Article  CAS  Google Scholar 

  12. Kaplan SS, Basford RE, Jeong MH, Simmons RL. Mechanisms of biomaterial-induced superoxide release by neutrophils. J Biomed Mater Res. 1994;28(3):377–86.

    Article  CAS  Google Scholar 

  13. Kaplan SS, Basford RE, Jeong MH, Simmons RL. Biomaterial-neutrophil interactions: dysregulation of oxidative functions of fresh neutrophils induced by prior neutrophil-biomaterial interaction. J Biomed Mater Res. 1996;30(1):67–75.

    Article  CAS  Google Scholar 

  14. Moore MA, Kaplan DS, Picciolo GL, Wallis RR, Kowolik MJ. Effect of cellulose acetate materials on the oxidative burst of human neutrophils. J Biomed Mater Res. 2001;55(3):257–65.

    Article  CAS  Google Scholar 

  15. Patel JD, Krupka T, Anderson JM. iNOS-mediated generation of reactive oxygen and nitrogen species by biomaterial-adherent neutrophils. J Biomed Mater Res A. 2007;80(2):381–90.

    Google Scholar 

  16. Santos TC, Marques AP, Silva SS, Oliveira JM, Mano JF, Castro AG, et al. In vitro evaluation of the behaviour of human polymorphonuclear neutrophils in direct contact with chitosan-based membranes. J Biotechnol. 2007;132(2):218–26.

    Article  CAS  Google Scholar 

  17. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973;137(5):1142–62.

    Article  CAS  Google Scholar 

  18. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.

    Article  CAS  Google Scholar 

  19. Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell. 2001;106(3):255–8.

    Article  CAS  Google Scholar 

  20. Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009;27:669–92.

    Article  CAS  Google Scholar 

  21. Naik SH, Sathe P, Park HY, Metcalf D, Proietto AI, Dakic A, et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol. 2007;8(11):1217–26.

    Article  CAS  Google Scholar 

  22. Chorro L, Sarde A, Li M, Woollard KJ, Chambon P, Malissen B, et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med. 2009;206(13):3089–100.

    Article  CAS  Google Scholar 

  23. Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol. 2008;8(12):935–47.

    Article  CAS  Google Scholar 

  24. Bogunovic M, Ginhoux F, Helft J, Shang L, Hashimoto D, Greter M, et al. Origin of the lamina propria dendritic cell network. Immunity. 2009;31(3):513–25.

    Article  CAS  Google Scholar 

  25. Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. TNF/iNOS-producing ­dendritic cells mediate innate immune defense against bacterial infection. Immunity. 2003; 19(1):59–70.

    Article  CAS  Google Scholar 

  26. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.

    Article  CAS  Google Scholar 

  27. Takeuchi O, Akira S. Signaling pathways activated by microorganisms. Curr Opin Cell Biol. 2007;19(2):185–91.

    Article  CAS  Google Scholar 

  28. Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009;21(4):317–37.

    Article  CAS  Google Scholar 

  29. Huppa JB, Davis MM. T-cell-antigen recognition and the immunological synapse. Nat Rev Immunol. 2003;3(12):973–83.

    Article  CAS  Google Scholar 

  30. Dustin ML. Insights into function of the immunological synapse from studies with supported planar bilayers. Curr Top Microbiol Immunol. 2010;340:1–24.

    Article  CAS  Google Scholar 

  31. Sechi AS, Buer J, Wehland J, Probst-Kepper M. Changes in actin dynamics at the T-cell/APC interface: implications for T-cell anergy? Immunol Rev. 2002;189:98–110.

    Article  CAS  Google Scholar 

  32. Sechi AS, Wehland J. Interplay between TCR signalling and actin cytoskeleton dynamics. Trends Immunol. 2004;25(5):257–65.

    Article  CAS  Google Scholar 

  33. Kapsenberg ML. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol. 2003;3(12):984–93.

    Article  CAS  Google Scholar 

  34. de Jong EC, Smits HH, Kapsenberg ML. Dendritic cell-mediated T cell polarization. Springer Semin Immunopathol. 2005;26(3):289–307.

    Article  Google Scholar 

  35. Ghilardi N, Ouyang W. Targeting the development and effector functions of TH17 cells. Semin Immunol. 2007;19(6):383–93.

    Article  CAS  Google Scholar 

  36. Stockinger B, Veldhoen M, Martin B. Th17 T cells: linking innate and adaptive immunity. Semin Immunol. 2007;19(6):353–61.

    Article  CAS  Google Scholar 

  37. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol. 2003;21:685–711.

    Article  CAS  Google Scholar 

  38. Morelli AE, Thomson AW. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol. 2007;7(8):610–21.

    Article  CAS  Google Scholar 

  39. Andrews DM, Andoniou CE, Scalzo AA, van Dommelen SL, Wallace ME, Smyth MJ, et al. Cross-talk between dendritic cells and natural killer cells in viral infection. Mol Immunol. 2005;42(4):547–55.

    Article  CAS  Google Scholar 

  40. Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Munz C. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med. 2002;195(3):343–51.

    Article  CAS  Google Scholar 

  41. Dubois B, Bridon JM, Fayette J, Barthelemy C, Banchereau J, Caux C, et al. Dendritic cells directly modulate B cell growth and differentiation. J Leukoc Biol. 1999;66(2):224–30.

    CAS  Google Scholar 

  42. Fayette J, Dubois B, Vandenabeele S, Bridon JM, Vanbervliet B, Durand I, et al. Human dendritic cells skew isotype switching of CD40-activated naive B cells towards IgA1 and IgA2. J Exp Med. 1997;185(11):1909–18.

    Article  CAS  Google Scholar 

  43. Elamanchili P, Diwan M, Cao M, Samuel J. Characterization of poly(D, L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine. 2004;22(19):2406–12.

    Article  CAS  Google Scholar 

  44. Elamanchili P, Lutsiak CM, Hamdy S, Diwan M, Samuel J. “Pathogen-mimicking” nanoparticles for vaccine delivery to dendritic cells. J Immunother. 2007;30(4):378–95.

    Article  CAS  Google Scholar 

  45. Yoshida M, Babensee JE. Poly(lactic-co-glycolic acid) enhances maturation of human monocyte-derived dendritic cells. J Biomed Mater Res A. 2004;71(1):45–54.

    Article  Google Scholar 

  46. Babensee JE, Paranjpe A. Differential levels of dendritic cell maturation on different biomaterials used in combination products. J Biomed Mater Res A. 2005;74(4):503–10.

    Google Scholar 

  47. Yoshida M, Babensee JE. Differential effects of agarose and poly(lactic-co-glycolic acid) on dendritic cell maturation. J Biomed Mater Res A. 2006;79(2):393–408.

    Google Scholar 

  48. Yoshida M, Mata J, Babensee JE. Effect of poly(lactic-co-glycolic acid) contact on maturation of murine bone marrow-derived dendritic cells. J Biomed Mater Res A. 2007;80(1):7–12.

    Google Scholar 

  49. Lutsiak ME, Robinson DR, Coester C, Kwon GS, Samuel J. Analysis of poly(D, L-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in vitro. Pharm Res. 2002;19(10):1480–7.

    Article  CAS  Google Scholar 

  50. Waeckerle-Men Y, Scandella E, Uetz-Von Allmen E, Ludewig B, Gillessen S, Merkle HP, et al. Phenotype and functional analysis of human monocyte-derived dendritic cells loaded with biodegradable poly(lactide-co-glycolide) microspheres for immunotherapy. J Immunol Methods. 2004;287(1–2):109–24.

    Article  CAS  Google Scholar 

  51. Newman KD, Elamanchili P, Kwon GS, Samuel J. Uptake of poly(D, L-lactic-co-glycolic acid) microspheres by antigen-presenting cells in vivo. J Biomed Mater Res. 2002;60(3):480–6.

    Article  CAS  Google Scholar 

  52. Schanen BC, Karakoti AS, Seal S, Drake 3rd DR, Warren WL, Self WT. Exposure to titanium dioxide nanomaterials provokes inflammation of an in vitro human immune construct. ACS Nano. 2009;3(9):2523–32.

    Article  CAS  Google Scholar 

  53. Arcos D, Vallet-Regi M. Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 2010;6(8):2874–88.

    Article  CAS  Google Scholar 

  54. Beamer CA, Holian A. Silica suppresses Toll-like receptor ligand-induced dendritic cell activation. FASEB J. 2008;22(6):2053–63.

    Article  CAS  Google Scholar 

  55. Shokouhi B, Coban C, Hasirci V, Aydin E, Dhanasingh A, Shi N, et al. The role of multiple toll-like receptor signalling cascades on interactions between biomedical polymers and dendritic cells. Biomaterials. 2010;31(22):5759–71.

    Article  CAS  Google Scholar 

  56. Shankar SP, Petrie TA, Garcia AJ, Babensee JE. Dendritic cell responses to self-assembled monolayers of defined chemistries. J Biomed Mater Res A. 2010;92(4):1487–99.

    Google Scholar 

  57. Barbosa JN, Madureira P, Barbosa MA, Aguas AP. The influence of functional groups of self-assembled monolayers on fibrous capsule formation and cell recruitment. J Biomed Mater Res A. 2006;76(4):737–43.

    Google Scholar 

  58. Kamath S, Bhattacharyya D, Padukudru C, Timmons RB, Tang L. Surface chemistry influences implant-mediated host tissue responses. J Biomed Mater Res A. 2008;86(3):617–26.

    Google Scholar 

  59. Krause M, Sechi AS, Konradt M, Monner D, Gertler FB, Wehland J. Fyn-binding protein (Fyb)/SLP-76-associated protein (SLAP), Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the Arp2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton. J Cell Biol. 2000;149(1):181–94.

    Article  CAS  Google Scholar 

  60. Coppolino MG, Krause M, Hagendorff P, Monner DA, Trimble W, Grinstein S, et al. Evidence for a molecular complex consisting of Fyb/SLAP, SLP-76, Nck, VASP and WASP that links the actin cytoskeleton to Fcgamma receptor signalling during phagocytosis. J Cell Sci. 2001;114(Pt 23):4307–18.

    CAS  Google Scholar 

  61. Ross R, Jonuleit H, Bros M, Ross XL, Yamashiro S, Matsumura F, et al. Expression of the actin-bundling protein fascin in cultured human dendritic cells correlates with dendritic morphology and cell differentiation. J Invest Dermatol. 2000;115(4):658–63.

    Article  CAS  Google Scholar 

  62. Shutt DC, Daniels KJ, Carolan EJ, Hill AC, Soll DR. Changes in the motility, morphology, and F-actin architecture of human dendritic cells in an in vitro model of dendritic cell development. Cell Motil Cytoskeleton. 2000;46(3):200–21.

    Article  CAS  Google Scholar 

  63. West MA, Wallin RP, Matthews SP, Svensson HG, Zaru R, Ljunggren HG, et al. Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science. 2004;305(5687):1153–7.

    Article  CAS  Google Scholar 

  64. van Helden SF, Krooshoop DJ, Broers KC, Raymakers RA, Figdor CG, van Leeuwen FN. A critical role for prostaglandin E2 in podosome dissolution and induction of high-speed migration during dendritic cell maturation. J Immunol. 2006;177(3):1567–74.

    Google Scholar 

  65. Rogers TH, Babensee JE. The role of integrins in the recognition and response of dendritic cells to biomaterials. Biomaterials. 2011;32(5):1270–9.

    Article  CAS  Google Scholar 

  66. Maitra R, Clement CC, Crisi GM, Cobelli N, Santambrogio L. Immunogenecity of modified alkane polymers is mediated through TLR1/2 activation. PLoS One. 2008;3(6):e2438.

    Article  Google Scholar 

  67. Flo TH, Ryan L, Latz E, Takeuchi O, Monks BG, Lien E, et al. Involvement of toll-like receptor (TLR) 2 and TLR4 in cell activation by mannuronic acid polymers. J Biol Chem. 2002;277(38):35489–95.

    Article  CAS  Google Scholar 

  68. Grandjean-Laquerriere A, Tabary O, Jacquot J, Richard D, Frayssinet P, Guenounou M, et al. Involvement of toll-like receptor 4 in the inflammatory reaction induced by hydroxyapatite particles. Biomaterials. 2007;28(3):400–4.

    Article  CAS  Google Scholar 

  69. Seong SY, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol. 2004;4(6):469–78.

    Article  CAS  Google Scholar 

  70. Pastor JC, Puente B, Telleria J, Carrasco B, Sanchez H, Nocito M. Antisilicone antibodies in patients with silicone implants for retinal detachment surgery. Ophthalmic Res. 2001;33(2):87–90.

    Article  CAS  Google Scholar 

  71. Zippel R, Wilhelm L, Marusch F, Koch A, Urban G, Schlosser M. Antigenicity of polyester (Dacron) vascular prostheses in an animal model. Eur J Vasc Endovasc Surg. 2001;21(3):202–7.

    Article  CAS  Google Scholar 

  72. Schlosser M, Wilhelm L, Urban G, Ziegler B, Ziegler M, Zippel R. Immunogenicity of polymeric implants: long-term antibody response against polyester (Dacron) following the implantation of vascular prostheses into LEW.1A rats. J Biomed Mater Res. 2002;61(3):450–7.

    Article  CAS  Google Scholar 

  73. Wilhelm L, Zippel R, von Woedtke T, Kenk H, Hoene A, Patrzyk M, et al. Immune response against polyester implants is influenced by the coating substances. J Biomed Mater Res A. 2007;83(1):104–13.

    Google Scholar 

  74. Zhao Q, Topham N, Anderson JM, Hiltner A, Lodoen G, Payet CR. Foreign-body giant cells and polyurethane biostability: in vivo correlation of cell adhesion and surface cracking. J Biomed Mater Res. 1991;25(2):177–83.

    Article  CAS  Google Scholar 

  75. McNally AK, Anderson JM. Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am J Pathol. 1995;147(5):1487–99.

    CAS  Google Scholar 

  76. Kao WJ, McNally AK, Hiltner A, Anderson JM. Role for interleukin-4 in foreign-body giant cell formation on a poly(etherurethane urea) in vivo. J Biomed Mater Res. 1995;29(10):1267–75.

    Article  CAS  Google Scholar 

  77. DeFife KM, Jenney CR, McNally AK, Colton E, Anderson JM. Interleukin-13 induces human monocyte/macrophage fusion and macrophage mannose receptor expression. J Immunol. 1997;158(7):3385–90.

    CAS  Google Scholar 

  78. McNally AK, DeFife KM, Anderson JM. Interleukin-4-induced macrophage fusion is prevented by inhibitors of mannose receptor activity. Am J Pathol. 1996;149(3):975–85.

    CAS  Google Scholar 

  79. Cui W, Ke JZ, Zhang Q, Ke HZ, Chalouni C, Vignery A. The intracellular domain of CD44 promotes the fusion of macrophages. Blood. 2006;107(2):796–805.

    Article  CAS  Google Scholar 

  80. Han X, Sterling H, Chen Y, Saginario C, Brown EJ, Frazier WA, et al. CD47, a ligand for the macrophage fusion receptor, participates in macrophage multinucleation. J Biol Chem. 2000;275(48):37984–92.

    Article  CAS  Google Scholar 

  81. Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med. 2005;202(3) :345–51.

    Article  CAS  Google Scholar 

  82. Bobryshev YV, Inder SJ, Cherian SM, Lord RS, Ao PY, Hawthorne WJ, et al. Colonisation of prosthetic grafts by immunocompetent cells in a sheep model. Cardiovasc Surg. 2001;9(2): 166–76.

    Article  CAS  Google Scholar 

  83. Wolfram D, Rainer C, Niederegger H, Piza H, Wick G. Cellular and molecular composition of fibrous capsules formed around silicone breast implants with special focus on local immune reactions. J Autoimmun. 2004;23(1):81–91.

    Article  CAS  Google Scholar 

  84. Vasilijic S, Savic D, Vasilev S, Vucevic D, Gasic S, Majstorovic I, et al. Dendritic cells acquire tolerogenic properties at the site of sterile granulomatous inflammation. Cell Immunol. 2005;233(2):148–57.

    Article  CAS  Google Scholar 

  85. Megiovanni AM, Sanchez F, Robledo-Sarmiento M, Morel C, Gluckman JC, Boudaly S. Polymorphonuclear neutrophils deliver activation signals and antigenic molecules to dendritic cells: a new link between leukocytes upstream of T lymphocytes. J Leukoc Biol. 2006;79(5): 977–88.

    Article  CAS  Google Scholar 

  86. van Gisbergen KP, Sanchez-Hernandez M, Geijtenbeek TB, van Kooyk Y. Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J Exp Med. 2005;201(8):1281–92.

    Article  Google Scholar 

  87. Myers CL, Wertheimer SJ, Schembri-King J, Parks T, Wallace RW. Induction of ICAM-1 by TNF-alpha, IL-1 beta, and LPS in human endothelial cells after downregulation of PKC. Am J Physiol. 1992;263(4 Pt 1):C767–72.

    CAS  Google Scholar 

  88. Iwasawa K, Kameyama T, Ishikawa H, Sawa Y. Induction of ICAM-1 and VCAM-1 on the mouse lingual lymphatic endothelium with TNF-alpha. Acta Histochem Cytochem. 2008;41(5):115–20.

    Article  CAS  Google Scholar 

  89. Dinarello CA. IL-1: discoveries, controversies and future directions. Eur J Immunol. 2010; 40(3):599–606.

    Article  CAS  Google Scholar 

  90. Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol. 2007;8(10):1086–94.

    Article  CAS  Google Scholar 

  91. Petersen LK, Xue L, Wannemuehler MJ, Rajan K, Narasimhan B. The simultaneous effect of polymer chemistry and device geometry on the in vitro activation of murine dendritic cells. Biomaterials. 2009;30(28):5131–42.

    Article  CAS  Google Scholar 

  92. Chen H, Li P, Yin Y, Cai X, Huang Z, Chen J, et al. The promotion of type 1 T helper cell responses to cationic polymers in vivo via toll-like receptor-4 mediated IL-12 secretion. Biomaterials. 2010;31(32):8172–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Interdisciplinary Center for Clinical Research (IZKF) of the Medical Faculty of RWTH Aachen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio S. Sechi .

Editor information

Editors and Affiliations

Appendix

Appendix

See Table 7.1.

Glossary

Adaptive (or acquired) immune response

The process by which the immune system responds to an infection or vaccination by producing specific antibodies towards foreign antigens.

Antigen presentation

The process by which dendritic cells (and, to a minor ­extent, macrophages and B cells) capture antigens and display them on their surface, thus enabling recognition by T cells.

Apoptosis

A type of specialized cell death by which cells kill themselves. It plays an essential role in many processes such as tissue remodeling during embryonic development.

Biocompatibility

The property of a liquid or a solid substance of being nontoxic and non-dangerous to a living cell or a tissue.

Chemokines

Proteins that activate and stimulate the directional migration of ­immune cells.

Cytokines

Soluble proteins that are secreted by immune cells and that serve to regulate the immune response.

Cytotoxicity

The attribute of a substance of being toxic to living cells.

Foreign body giant cell

A multinucleated cell that is generated by fusion of macrophages in response to the presence of a large foreign body.

Immunological memory

The ability of the immune system to remember a specific antigen and respond rapidly and vigorously to subsequent encounters with the same antigen.

Immunological tolerance

The non-reactivity of the immune system to specific antigens, primarily self-antigens.

Inflammatory response

One of the earliest reactions of the immune system against tissue damage caused by pathogens, trauma, or toxins. It is characterized by pain, localized heat, skin redness, and swelling.

Interleukins

A class of proteins that act to stimulate and regulate the function of several immune cell types.

Major histocompatibility complex

Cell membrane antigens that are the key ­determinant of tissue type and transplant compatibility.

Naïve T cells

A T cell that has not yet encountered its cognate antigen.

Pathogen-associated molecular patterns

Molecules associated with pathogens that are recognized by TLRs or other pattern recognition receptors.

Phenotype

In a cell, it represents the morphological and biochemical features as determined by its gene expression profile and interactions with the environment.

Podosome

A highly dynamic, actin-rich, ringlike cellular structure frequently formed by dendritic cells and macrophages that is essential for the adhesion and motility of these cells.

Toll-like receptors

A class of surface or endosomal proteins expressed by immune cells that recognize pathogen-associated molecules.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sechi, A.S., Shokouhi, B. (2013). Dendritic Cell–Biomaterial Interactions: Implications for the Onset and Development of the Foreign Body Response. In: Moriarty, T., Zaat, S., Busscher, H. (eds) Biomaterials Associated Infection. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1031-7_7

Download citation

Publish with us

Policies and ethics