Skip to main content

Pathogenesis of Type 2 Diabetes

  • Chapter
  • First Online:
Atlas of Diabetes

Abstract

Type 2 diabetes is one of the most common chronic diseases. In the USA, it affects about 8% of the population. In addition to 18 million people with diagnosed diabetes, 6 million have undiagnosed diabetes and 57 million have prediabetes [i.e., impaired fasting glucose (IFG) or impaired glucose tolerance (IGT)] [ 1 ]. Phenotypically, more than 90% of people with diabetes mellitus have type 2 diabetes. This disorder, however, is extremely heterogeneous (see Fig. 7.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Diabetes Association: Total prevalence of diabetes and pre-diabetes, 2007. Available at http://diabetes.org. Accessed September 2009.

  2. Bogardus C, Lillioja S, Bennett P: Pathogenesis of NIDDM in Pima Indians. Diabetes Care1991, 14:685–690.

    Google Scholar 

  3. Cheung BM, Ong KL, Cherny SS, et al.: Diabetes prevalence and therapeutic target achievement in the United States, 1999 to 2006. Am J Med2009, 122:443–453.

    Google Scholar 

  4. Weyer C, Tataranni PA, Bogardus C, Pratley R: Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development. Diabetes Care2000, 24:89–94.

    Google Scholar 

  5. Weyer C, Bogardus C, Mott D, Pratley R: The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest1999, 104:787–794.

    Google Scholar 

  6. Kahn S: The importance of ß-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab2001, 86:4047–4058.

    Google Scholar 

  7. Pratley R, Weyer C: The role of impaired early insulin secretion in the pathogenesis of type II diabetes mellitus. Diabetologia2001, 44:929–945.

    Google Scholar 

  8. Hamman R: Genetic and environmental determinants of noninsulin dependent diabetes mellitus (NIDDM). Diabetes Metab Rev1992, 8:287–338.

    Google Scholar 

  9. Stefan N, Fritsche A, Haring H, Stumvoll M: Effect of experimental elevation of free fatty acids on insulin secretion and insulin sensitivity in healthy carriers of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 gene. Diabetes2001, 50:1143–1148.

    Google Scholar 

  10. Horikawa Y, Oda N, Cox N, et al.: Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet2000, 26:163–175.

    Google Scholar 

  11. Gloyn AL, Weedon MN, Owen KR, et al.: Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes2003, 52:568–572.

    Google Scholar 

  12. Florez JC, Jablonski KA, Kahn SE, et al.: Type 2 diabetes-associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program. Diabetes2007, 56:531–536.

    Google Scholar 

  13. Florez JC, Jablonski KA, Bayley N, et al.: TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med2006, 355:241–250.

    Google Scholar 

  14. Zhang C, Qi L, Hunter DJ, et al.: Variant of transcription factor 7-like 2 (TCF7L2) gene and the risk of type 2 diabetes in large cohorts of U.S. women and men. Diabetes2006, 55:2645–2648.

    Google Scholar 

  15. Grant SF, Thorleifsson G, Reynisdottir I, et al.: Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet2006, 38:320–323.

    Google Scholar 

  16. Yi F, Brubaker PL, Jin T: TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem2005, 280:1457–1464.

    Google Scholar 

  17. Saltiel A, Kahn C: Insulin signalling and the regulation of glucose and lipid metabolism. Nature2001, 414:799–806.

    Google Scholar 

  18. Gloyn A: The genetics of diabetes: a progress report. Practical Diabetes Int2001, 18:246–250.

    Google Scholar 

  19. Shaw J, Purdie D, Neil H, et al.: The relative risks of hyperglycemia, obesity and dyslipidemia in relatives of patients with type II diabetes mellitus. Diabetologia1999, 42:24–27.

    Google Scholar 

  20. Shatten B, Smith G, Kuller L, Neation J: Risk factors for the development of type 2 diabetes among men enrolled in the usual care group of the multiple risk factor intervention trial. Diabetes1993, 16:1331–1338.

    Google Scholar 

  21. Gerich J, Van Haeften T: Insulin resistance versus impaired insulin secretion as the genetic basis for type 2 diabetes. Curr Opin Endocrinol Diabetes1998, 5:144–148.

    Google Scholar 

  22. Pimenta W, Kortytkowski M, Mitrakou A, et al.: Pancreatic beta-cell dysfunction as the primary genetic lesion in NIDDM. Evidence from studies in normal glucose-tolerant individuals with a first-degree NIDDM relative. JAMA1995, 273:1855–1861.

    Google Scholar 

  23. Vaag A, Alford F, Beck-Nielsen H: Intracellular glucose and fat metabolism in identical twins discordant for non-insulin-dependent diabetes mellitus (NIDDM): acquired versus genetic metabolic defects. Diabetic Med1996, 13:806–815.

    Google Scholar 

  24. Cerasi E, Luft R: Insulin response to glucose infusion in diabetic and nondiabetic monozygotic twin pairs: genetic control of insulin response. Acta Endocrinol1967, 55:330–345.

    Google Scholar 

  25. Barnett A, Spiliopoulos A, Pyke D, et al.: Metabolic studies in unaffected co-twins of noninsulin dependent diabetics. Br Med J1981, 282:1656–1658.

    Google Scholar 

  26. Pyke D, Taylor K: Glucose tolerance and serum insulin in unaffected identical twins of diabetics. Br Med J1967, 4:21–22.

    Google Scholar 

  27. Hu F, Manson J, Stampfer M, et al.: Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med2001, 345:790–797.

    Google Scholar 

  28. Choi B, Shi F: Risk factors for diabetes mellitus by age and sex: results of the national population health survey. Diabetologia2001, 44:1221–1231.

    Google Scholar 

  29. Marshall J, Hoag S, Shetterly S, Hammon R: Dietary fat predicts conversion of impaired glucose tolerance to NIDDM. Diabetes Care1994, 17:50–56.

    Google Scholar 

  30. Wei M, Schweitner H, Blair S: The association between physical activity, physical fitness and type 2 diabetes mellitus. Compr Ther2000, 26:176–182.

    Google Scholar 

  31. Wannamethee S, Shaper A, Perry I: Smoking as a modifiable risk factor for type 2 diabetes in middle aged men. Diabetes Care2001, 24:1590–1595.

    Google Scholar 

  32. Rich-Edwards J, Colditz G, Stampfer M, et al.: Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann Intern Med1999, 130:278–284.

    Google Scholar 

  33. Eriksson J, Lindstrom J, Tuomilehto J: Potential for prevention of type 2 diabetes. Br Med Bull2001, 60:183–199.

    Google Scholar 

  34. Knowler W, Barrett-Connor E, Fowler S, et al.: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med2002, 346:393–403.

    Google Scholar 

  35. Tuomilehto J, Lindström J, Eriksson J, et al.: Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med2001, 344:1343–1350.

    Google Scholar 

  36. Pan X-R, Li G-W, Hu Y-H, et al.: Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and Diabetes Study. Diabetes Care1997, 20:537–544.

    Google Scholar 

  37. Eriksson K, Lindgarde F: Prevention of type 2 (noninsulin dependent) diabetes mellitus by diet and exercise. Diabetologia1991, 34:891–898.

    Google Scholar 

  38. Wenying Y, Lixiang L, Jinwu Q, et al.: The preventive effect of acarbose and metformin on the progression to diabetes mellitus in the IGT population: a 3-year multicenter prospective study. Chin J Endocrinol Metab2001, 17:131–136.

    Google Scholar 

  39. Chiasson J, Josse R, Gomis R, et al.: Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet2002, 359:2072–2077.

    Google Scholar 

  40. Buchanan TA, Xiang AH, Peters RK, et al.: Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women. Diabetes2002, 51:2796–2803.

    Google Scholar 

  41. Torgerson JS, Hauptman J, Boldrin MN, Sjostrom L: XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care2004, 27:155–161.

    Google Scholar 

  42. Vetter ML, Cardillo S, Rickels MR, Iqbal N: Narrative review: effect of bariatric surgery on type 2 diabetes mellitus. Ann Intern Med2009, 150:94–103.

    Google Scholar 

  43. Buchwald H, Avidor Y, Braunwald E, et al.: Bariatric surgery: a systematic review and meta-analysis. JAMA2004, 292:1724–1737.

    Google Scholar 

  44. Pories WJ, Swanson MS, MacDonald KG, et al.: Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg1995, 222:339–350.

    Google Scholar 

  45. Cummings DE, Overduin J: Gastrointestinal regulation of food intake. J Clin Invest2007, 117:13–23.

    Google Scholar 

  46. Kageyama H, Funahashi H, Hirayama M, et al.: Morphological analysis of ghrelin and its receptor distribution in the rat pancreas. Regul Pept2005, 126:67–71.

    Google Scholar 

  47. Ballantyne GH: Peptide YY(1–36) and peptide YY(3–36): Part I. Distribution, release and actions. Obes Surg2006, 16:651–658.

    Google Scholar 

  48. Clements RH, Gonzalez QH, Long CI, et al.: Hormonal changes after Roux-en Y gastric bypass for morbid obesity and the control of type-II diabetes mellitus. Am Surg2004, 70:1–4.

    Google Scholar 

  49. Laferrere B, Teixeira J, McGinty J, et al.: Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab2008, 93:2479–2485.

    Google Scholar 

  50. Korner J, Bessler M, Inabnet W, et al.: Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis2007, 3:597–601.

    Google Scholar 

  51. le Roux CW, Welbourn R, Werling M, et al.: Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg2007, 246:780–785.

    Google Scholar 

  52. Morinigo R, Moize V, Musri M, et al.: Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab2006, 91:1735–1740.

    Google Scholar 

  53. Cummings DE, Weigle DS, Frayo RS, et al.: Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med2002, 346:1623–1630.

    Google Scholar 

  54. Faraj M, Havel PJ, Phelis S, et al.: Plasma acylation-stimulating protein, adiponectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab2003, 88:1594–1602.

    Google Scholar 

  55. Holdstock C, Engstrom BE, Ohrvall M, et al.: Ghrelin and adipose tissue regulatory peptides: effect of gastric bypass surgery in obese humans. J Clin Endocrinol Metab2003, 88:3177–3183.

    Google Scholar 

  56. Cummings DE, Overduin J, Foster-Schubert KE, Carlson MJ: Role of the bypassed proximal intestine in the anti-diabetic effects of bariatric surgery. Surg Obes Relat Dis2007, 3:109–115.

    Google Scholar 

  57. Rubino F: Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care2008, 31(Suppl 2):S290–S296.

    Google Scholar 

  58. Porte D Jr, Kahn S: Beta-cell dysfunction and failure in type 2 diabetes: potential mechanisms. Diabetes2001, 50(Suppl 1):S160–S163.

    Google Scholar 

  59. Carey D, Jenkins A, Campbell L, et al.: Abdominal fat and insulin resistance in normal and overweight women: direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM. Diabetes1996, 45:633–638.

    Google Scholar 

  60. Banerji M, Chaiken R, Gordon D, et al.: Does intra-abdominal ­adipose tissue in black men determine whether NIDDM is insulin-resistant or insulin-sensitive? Diabetes1995, 44:141–146.

    Google Scholar 

  61. Byrne M, Sturgis J, Sobel R, Polonsky K: Elevated plasma glucose 2h postchallenge predicts defects in B-cell function. Am J Physiol1996, 270:E572–E579.

    Google Scholar 

  62. Nesher R, Casa Della L, Litvin Y, et al.: Insulin deficiency and insulin resistance in type II (noninsulin dependent) diabetes: quantitative contributions of pancreatic and peripheral responses to glucose homeostasis. Eur J Clin Invest1987, 17:266–274.

    Google Scholar 

  63. Campbell P, Mandarino L, Gerich J: Quantification of the relative impairment in actions of insulin on hepatic glucose production and peripheral glucose uptake in non-insulin-dependent diabetes mellitus. Metabolism1988, 37:15–21.

    Google Scholar 

  64. Kalant N, Leibovici D, Fukushima N, et al.: Insulin responsiveness of superficial forearm tissues in type 2 (noninsulin-dependent) diabetes. Diabetologia1982, 22:239–244.

    Google Scholar 

  65. Bonora E, Bonadonna R, DelPrato S, et al.: In vivo glucose metabolism in obese and type II diabetic subjects with or without hypertension. Diabetes1993, 42:764–772.

    Google Scholar 

  66. Nosadini R, Solini A, Velussi M, et al.: Impaired insulin-induced glucose uptake by extrahepatic tissue is hallmark of NIDDM patients who have or will develop hypertension and microalbuminuria. Diabetes1994, 43:491–499.

    Google Scholar 

  67. Groop L, Ekstrand A, Forsblom C, et al.: Insulin resistance, hypertension and microalbuminuria in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia1993, 36:642–647.

    Google Scholar 

  68. Gerich J: The genetic basis of type 2 diabetes mellitus: Impaired insulin secretion versus impaired insulin sensitivity. Endocr Rev1998, 19:491–503.

    Google Scholar 

  69. Dohm GL, Tapscott E, Pories W, et al.: An in vitro human muscle preparation suitable for metabolic studies. Decreased insulin stimulation of glucose transport in muscle from morbidly obese and diabetic subjects. J Clin Invest1988, 82:486–494.

    Google Scholar 

  70. Boden G: Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes1997, 46:3–10.

    Google Scholar 

  71. Hotamisligil G, Spiegelman B: Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes1994, 43:1271–1278.

    Google Scholar 

  72. Steppan C, Bailey S, Bhat S, et al.: The hormone resistin links obesity to diabetes. Nature2001, 409:307–312.

    Google Scholar 

  73. Ahima R, Flier J: Leptin. Annu Rev Physiol2000, 62:413–437.

    Google Scholar 

  74. Ahima R, Flier J: Adipose tissue as an endocrine organ. Trends Endocrinol Metab2000, 11:327–332.

    Google Scholar 

  75. Kelley D, Goodposter B: Skeletal muscle triglyceride: an aspect of regional adiposity and insulin resistance. Diabetes Care2001, 24:933–941.

    Google Scholar 

  76. Virkamaki A, Korsheninnikova E, Seppala-Lindroos A, et al.: Intramyocellular lipid is associated with resistance to in vivo insulin actions on glucose uptake, antilipolysis, and early insulin signaling pathways in human skeletal muscle. Diabetes2001, 50:2337–2343.

    Google Scholar 

  77. Mitrakou A, Kelley D, Veneman T, et al.: Contribution of abnormal muscle and liver glucose metabolism in postprandial hyperglycemia in noninsulin-dependent diabetes mellitus. Diabetes1990, 39:1381–1390.

    Google Scholar 

  78. Dinneen S, Gerich J, Rizza R: Carbohydrate metabolism in noninsulin-dependent diabetes mellitus. N Engl J Med1992, 327:707–713.

    Google Scholar 

  79. Woerle HJ, Szoke E, Meyer C, et al.: Mechanisms for abnormal postprandial glucose metabolism in type 2 diabetes. Am J Physiol Endocrinol Metab2006, 290:E67–E77.

    Google Scholar 

  80. Perseghin G, Petersen K, Shulman GI: Cellular mechanism of insulin resistance: potential links with inflammation. Int J Obes Relat Metab Disord2003, 27 Suppl 3:S6–11.

    Google Scholar 

  81. Petersen KF, Dufour S, Befroy D, et al.: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med2004, 350:664–671.

    Google Scholar 

  82. Patel A, MacMahon S, Chalmers J, et al.: Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med2008, 358:2560–2572.

    Google Scholar 

  83. DCCT Research Group: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin dependent diabetes mellitus. N Engl J Med1993, 329:977–986.

    Google Scholar 

  84. UK Prospective Diabetes Study (UKPDS) Group: Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet1998, 352:854–865.

    Google Scholar 

  85. Reichard P, Pihl M, Rosenqvist U, Sule J: Complications in IDDM are caused by elevated blood glucose level: The Stockholm Diabetes Intervention Study (SDIS) at 10-year follow up. Diabetologia1996, 39:1483–1488.

    Google Scholar 

  86. Gerstein HC, Miller ME, Byington RP, et al.: Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med2008, 358:2545–2559.

    Google Scholar 

  87. Abraira C, Duckworth WC, Moritz T: Glycaemic separation and risk factor control in the Veterans Affairs Diabetes Trial: an interim report. Diabetes Obes Metab2009, 11:150–156.

    Google Scholar 

  88. UK Prospective Diabetes Study (UKPDS) Group: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet1998, 352:837–853.

    Google Scholar 

  89. Holman RR, Paul SK, Bethel MA, et al.: 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med2008, 359:1577–1589.

    Google Scholar 

  90. DCCT Research Group: Effect of intensive diabetes management on macrovascular events and risk factors in the Diabetes Control and Complications Trial. Am J Cardiol1995, 75:894–903.

    Google Scholar 

  91. Nathan DM, Cleary PA, Backlund JY, et al.: Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med2005, 353:2643–2653.

    Google Scholar 

  92. Gerich JE: Clinical significance, pathogenesis, and management of postprandial hyperglycemia. Arch Intern Med2003, 163:1306–1316.

    Google Scholar 

  93. Chiasson JL, Josse RG, Gomis R, et al.: Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA2003, 290:486–494.

    Google Scholar 

  94. Rodbard HW, Blonde L, Braithwaite SS, et al.: American Association of Clinical Endocrinologists medical guidelines for clinical practice for the management of diabetes mellitus. Endocr Pract2007, 13(Suppl 1):1–68.

    Google Scholar 

  95. Nathan DM, Buse JB, Davidson MB, et al.: Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care2006, 29:1963–1972.

    Google Scholar 

  96. Woerle HJ, Pimenta W, Meyer C, et al.: Diagnostic and therapeutic implications of relationships between fasting, 2 hour postchallenge plasma glucose and HbA1cvalues. Arch Intern Med2004, 164:1627–1632.

    Google Scholar 

  97. Lebovitz H: Insulin secretogogues: old and new. Diab Rev1999, 7:139–153.

    Google Scholar 

  98. Langtry H, Balfour J: Glimepiride. A review of its use in the management of type 2 diabetes mellitus. Drugs1998, 55:563–584.

    Google Scholar 

  99. Dunn C, Faulds D: Nateglinide. Drugs2000, 60:607–615.

    Google Scholar 

  100. Lee Y, Hirose H, Ohneda M, et al.: Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci U S A1994, 91:10878–10882.

    Google Scholar 

  101. Mudaliar S, Henry R: New oral therapies for type 2 diabetes mellitus: the glitazones or insulin sensitizers. Annu Rev Med2001, 52:239–257.

    Google Scholar 

  102. Inzucchi S, Maggs D, Spollett G, et al.: Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med1998, 338:867–872.

    Google Scholar 

  103. Campbell L, Baker D, Campbell RK: Miglitol: assessment of its role in the treatment of patients with diabetes mellitus. Ann Pharmacother2000, 34:1291–1301.

    Google Scholar 

  104. Bolli G, Di Marchi R, Park G, et al.: Insulin analogues and their potential in the management of diabetes mellitus. Diabetologia1999, 42:1151–1167.

    Google Scholar 

  105. Lepore M, Pampanelli S, Fanelli C, et al.: Pharmacokinetics and pharmacodynamics of subcutaneous injection of long-acting human insulin analog glargine, NPH insulin, and ultralente human insulin and continuous subcutaneous infusion of insulin lispro. Diabetes2000, 49:2142–2148.

    Google Scholar 

  106. Abraira C, Henderson W, Colwell J, et al.: Response to intensive therapy steps and glipizide dose in combination with insulin in type 2 diabetes. Diabetes Care1998, 21:574–579.

    Google Scholar 

  107. Turner R, Cull C, Frighi V, Holman R: Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus. Progressive requirement for multiple therapies (UKPDS 49). JAMA1999, 281:2005–2012.

    Google Scholar 

  108. Siegel E, Mayer G, Nauck M, Creutzfeldt W: [Factitious hypoglycemia caused by taking a sulfonylurea drug] [German]. Dtsch Med Wochenschr1987, 112:1575–1579.

    Google Scholar 

  109. Wroblewski M, Gottsater A, Lindgarde F, et al.: Gender, autoantibodies, and obesity in newly diagnosed diabetic patients aged 40–75 years. Diabetes Care1998, 21:250–255.

    Google Scholar 

  110. Bell G, Polonsky K: Diabetes mellitus and genetically programmed defects in beta-cell function. Nature2001, 414:788–791.

    Google Scholar 

  111. Diabetes in America, edn 2. Bethesda, MD: National Institutes of Health; 1995.

    Google Scholar 

  112. Kahn C: Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes1994, 43:1066–1084.

    Google Scholar 

  113. Beals JK: Pioglitazone reduces conversion from impaired glucose tolerance to type 2 diabetes. Presented at the American Diabetes Association 68th Scientific Sessions: Late Breaking Clinical Studies. San Francisco, CA; June 9, 2008. Medscape Medical News 2008. Accessible at http://www.medscape.com/viewarticle/575860. Accessed September 3, 2009.

  114. Gerstein HC, Yusuf S, Bosch J, et al.: Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet2006, 368:1096–1105.

    Google Scholar 

  115. Kahn S: The importance of the ß-cell in the pathogenesis of type 2 diabetes mellitus. Am J Med2000, 108(Suppl 6A):2S–8S.

    Google Scholar 

  116. Thorens B, Wu Y, Leahy J, Weir G: The loss of GLUT2 expression by glucose-unresponsive beta cells of db/db mice is reversible and is induced by the diabetic environment. J Clin Invest1992, 90:77–85.

    Google Scholar 

  117. Caro J, Sinha M, Raju SM, et al.: Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. J Clin Invest1987, 79:1330–1337.

    Google Scholar 

  118. Bak J, Moller N, Schmitz O, et al.: In vivo action and muscle glycogen synthase activity in type II (noninsulin dependent) diabetes mellitus: effects of diet treatment. Diabetologia1992, 35:777–784.

    Google Scholar 

  119. McGarry J, Dobbins R: Fatty acids, lipotoxicity and insulin secretion. Diabetologia1999, 42:128–138.

    Google Scholar 

  120. Unger R, Zhou Y: Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes2001, 50(Suppl 1):S118–S121.

    Google Scholar 

  121. Randle P, Priestman D, Mistry S, Halsall A: Glucose fatty acid interactions and the regulation of glucose disposal. J Cell Biochem1994, 55S:1–11.

    Google Scholar 

  122. Shulman G: Cellular mechanisms of insulin resistance. J Clin Invest2000, 106:171–176.

    Google Scholar 

  123. Garvey W, Huecksteadt T, Matthaei S, Olefsky J: Role of glucose transporters in the cellular insulin resistance of type II noninsulin-dependent diabetes mellitus. J Clin Invest1988, 81:1528–1536.

    Google Scholar 

  124. Kelley D, Mintun M, Watkins S, et al.: The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J Clin Invest1996, 97:2705–2713.

    Google Scholar 

  125. Cline G, Petersen K, Krssak M, et al.: Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med1999, 341:240–246.

    Google Scholar 

  126. Butler AE, Janson J, Bonner-Weir S, et al.: Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes2003, 52:102–110.

    Google Scholar 

  127. Yoon KH, Ko SH, Cho JH, et al.: Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab2003, 88:2300–2308.

    Google Scholar 

  128. Guiot Y, Sempoux C, Moulin P, Rahier J: No decrease of the beta-cell mass in type 2 diabetic patients. Diabetes2001, 50(Suppl 1):S188.

    Google Scholar 

  129. Stefan Y, Orci L, Malaisse-Lagae F, et al.: Quantitation of endocrine cell content in the pancreas of nondiabetic and diabetic humans. Diabetes1982, 31:694–700.

    Google Scholar 

  130. Sakuraba H, Mizukami H, Yagihashi N, et al.: Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia2002, 45:85–96.

    Google Scholar 

  131. Clark A, Wells C, Buley I, et al.: Islet amyloid, increased alpha-cells, reduced beta-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res1988, 9:151–159.

    Google Scholar 

  132. Kloppel G, Lohr M, Habich K, et al.: Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res1985, 4:110–125.

    Google Scholar 

  133. Gepts W: Contribution to the morphological study of the islands of Langerhans in diabetes; study of the quantitative variations of the different insular constituents. Ann Soc R Sci Med Nat Brux1957, 10:5–108.

    Google Scholar 

  134. Saito K, Yaginuma N, Takahashi T: Differential volumetry of A, B, and D cells in the pancreatic islets of diabetic and nondiabetic subjects. Tohoku J Exp Med1979, 129:273–283.

    Google Scholar 

  135. MacLean N, Ogilvie RF: Quantitative estimation of the pancreatic islet tissue in diabetic subjects. Diabetes1955, 4:367–376.

    Google Scholar 

  136. Westermark P, Wilander E: The influence of amyloid deposits on the islet volume in maturity onset diabetes mellitus. Diabetologia1978, 15:417–421.

    Google Scholar 

  137. Rahier J, Guiot Y, Goebbels RM, et al.: Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab2008, 10(Suppl 4):32–42.

    Google Scholar 

  138. Deng S, Vatamaniuk M, Huang X, et al.: Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. Diabetes2004, 53:624–632.

    Google Scholar 

  139. Hales C, Barker D, Clark P, et al.: Fetal and infant growth and impaired glucose tolerance at age 64. BMJ1991, 303:1019–1022.

    Google Scholar 

  140. Dahri S, Snoeck A, Reusens-Billen B, et al.: Islet function in offspring of mothers on low-protein diet during gestation. Diabetes1991, 40(Suppl 2):115–120.

    Google Scholar 

  141. Moran A, Zhang HJ, Olson LK, et al.: Differentiation of glucose toxicity from beta cell exhaustion during the evolution of defective insulin gene expression in the pancreatic islet cell line, HIT-T15. J Clin Invest1997, 99:534–539.

    Google Scholar 

  142. Olson LK, Redmon JB, Towle HC, Robertson RP: Chronic exposure of HIT cells to high glucose concentrations paradoxically decreases insulin gene transcription and alters binding of insulin gene regulatory protein. J Clin Invest1993, 92:514–519.

    Google Scholar 

  143. Lu M, Seufert J, Habener JF: Pancreatic beta-cell-specific repression of insulin gene transcription by CCAAT/enhancer-binding protein beta. Inhibitory interactions with basic helix-loop-helix transcription factor E47. J Biol Chem1997, 272:28349–28359.

    Google Scholar 

  144. Jonas JC, Sharma A, Hasenkamp W, et al.: Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. J Biol Chem1999, 274:14112–14121.

    Google Scholar 

  145. Tanaka Y, Gleason CE, Tran PO, et al.: Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc Natl Acad Sci U S A1999, 96:10857–10862.

    Google Scholar 

  146. Tajiri Y, Moller C, Grill V: Long-term effects of aminoguanidine on insulin release and biosynthesis: evidence that the formation of advanced glycosylation end products inhibits B cell function. Endocrinology1997, 138:273–280.

    Google Scholar 

  147. Cnop M, Hannaert JC, Hoorens A, et al.: Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes2001, 50:1771–1777.

    Google Scholar 

  148. Maedler K, Spinas GA, Dyntar D, et al.: Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes2001, 50:69–76.

    Google Scholar 

  149. Gremlich S, Bonny C, Waeber G, Thorens B: Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin, and somatostatin levels. J Biol Chem1997, 272:30261–30269.

    Google Scholar 

  150. Farney AC, Xenos E, Sutherland DE, et al.: Inhibition of pancreatic islet beta cell function by tumor necrosis factor is blocked by a soluble tumor necrosis factor receptor. Transplant Proc1993, 25:865–866.

    Google Scholar 

  151. Bolaffi JL, Rodd GG, Wang J, Grodsky GM: Interrelationship of changes in islet nicotine adenine nucleotide, insulin secretion, and cell viability induced by interleukin-1 beta. Endocrinology1994, 134:537–542.

    Google Scholar 

  152. Campbell IL, Oxbrow L, Harrison LC: Interferon-gamma: pleiotropic effects on a rat pancreatic beta cell line. Mol Cell Endocrinol1987, 52:161–167.

    Google Scholar 

  153. Janson J, Ashley R, Harrison D, et al.: The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes1999, 48:491–498.

    Google Scholar 

  154. Clark A, Nilsson MR: Islet amyloid: a complication of islet dysfunction or an aetiological factor in Type 2 diabetes? Diabetologia2004, 47:157–169.

    Google Scholar 

  155. Mitrakou A, Kelley D, Mokan M, et al.: Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med1992, 326:22–29.

    Google Scholar 

  156. Gerich J: Metabolic abnormalities in impaired glucose tolerance. Metabolism1997, 46(Suppl 1):40–43.

    Google Scholar 

  157. Van Haeften T, Pimenta W, Mitrakou A, et al.: Relative contributions of β-cell function and tissue insulin sensitivity to fasting and postglucose-load glycemia. Metabolism2000, 49:1318–1325.

    Google Scholar 

  158. DeFronzo R: The triumvirate: B-cell, muscle, and liver: a collusion responsible for NIDDM. Diabetes1988, 37:667–687.

    Google Scholar 

  159. Calles-Escandon J, Robbins D: Loss of early phase of insulin release in humans impairs glucose tolerance and blunts thermic effect of glucose. Diabetes1987, 36:1167–1172.

    Google Scholar 

  160. Meyer C, Stumvoll M, Nadkarni V, et al.: Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. J Clin Invest1998, 102:619–624.

    Google Scholar 

  161. Consoli A, Nurjhan N, Capani F, Gerich J: Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes1989, 38:550–561.

    Google Scholar 

  162. Magnusson I, Rothman D, Katz L, et al.: Increased rate of gluconeogenesis in type II diabetes. A 13C nuclear magnetic resonance study. J Clin Invest1992, 90:1323–1327.

    Google Scholar 

  163. Nurjhan N, Consoli A, Gerich J: Increased lipolysis and its consequences on gluconeogenesis in noninsulin-dependent diabetes mellitus. J Clin Invest1992, 89:169–175.

    Google Scholar 

  164. Kelley D, Mokan M, Veneman T: Impaired postprandial glucose utilization in non-insulin-dependent diabetes mellitus. Metabolism1994, 43:1549–1557.

    Google Scholar 

  165. Roden M, Petersen K, Shulman G: Nuclear magnetic resonance studies of hepatic glucose metabolism in humans. Recent Prog Horm Res2001, 56:219–237.

    Google Scholar 

  166. Turner R: The U.K. Prospective Diabetes Study. A review. Diabetes Care1998, 21(Suppl 3):C35–C38.

    Google Scholar 

  167. Cusi K, DeFronzo R: Metformin: a review of its metabolic effects. Diab Rev1998, 6:89–131.

    Google Scholar 

  168. Stumvoll M, Nurjhan N, Perriello G, et al.: Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med1995, 333:550–554.

    Google Scholar 

  169. Yki-Jarvinen H: Thiazolidinediones. N Engl J Med2004, 351:1106–1118.

    Google Scholar 

  170. Göke B, Herrmann-Rinke C: The evolving role of alpha-glucosidase inhibitors. Diabetes Metab Rev1998, 14:S31–S38.

    Google Scholar 

  171. Hollander PA, Elbein SC, Hirsch IB, et al.: Role of orlistat in the treatment of obese patients with type 2 diabetes. A 1-year randomized double-blind study. Diabetes Care1998, 21:1288–1294.

    Google Scholar 

  172. Miles JM, Leiter L, Hollander P, et al.: Effect of orlistat in overweight and obese patients with type 2 diabetes treated with metformin. Diabetes Care2002, 25:1123–1128.

    Google Scholar 

  173. Amori RE, Lau J, Pittas AG: Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA2007, 298:194–206.

    Google Scholar 

  174. Idris I, Donnelly R: Sodium-glucose co-transporter-2 inhibitors: an emerging new class of oral antidiabetic drug. Diabetes Obes Metab2009, 11:79–88.

    Google Scholar 

  175. Maassen J, Kadowaki T: Maternally inherited diabetes and deafness: a new diabetes subtype. Diabetologia1996, 39:375–382.

    Google Scholar 

  176. Taylor S, Cama S, Accili D, et al.: Mutations in the insulin receptor gene. Endocr Rev1992, 13:566–595.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazen Alsahli MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Alsahli, M., Gerich, J.E. (2012). Pathogenesis of Type 2 Diabetes. In: Skyler, J. (eds) Atlas of Diabetes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1028-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1028-7_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1027-0

  • Online ISBN: 978-1-4614-1028-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics