Skip to main content

Selenocysteine Biosynthesis and the Replacement of Selenocysteine with Cysteine in the Pathway

  • Chapter
  • First Online:
Selenium

Abstract

The biosynthetic pathway of selenocysteine (Sec), the 21st amino acid in the genetic code, has been established in eukaryotes and archaea using comparative genomic and experimental approaches. In addition, cysteine (Cys) was found to arise in place of selenocysteine in thioredoxin reductase (TR) in NIH 3T3 cells and in mice. An analysis of the selenocysteine biosynthetic pathway demonstrated that replacement of selenide with sulfide in generating the active cysteine donor, thiophosphate, resulted in cysteine being donated to the acceptor molecule, which is likely dehydroalanyl-tRNA[Ser]Sec, yielding Cys-tRNA[Ser]Sec. The identification of the pathways for biosynthesis of selenocysteine and cysteine in mammals is discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu XM, Carlson BA, Mix H et al (2007) PLoS Biol 5:e4

    Article  PubMed  Google Scholar 

  2. Xu XM, Carlson BA, Zhang Y et al (2007) Biol Trace Elem Res 119:234

    Article  PubMed  CAS  Google Scholar 

  3. Forchhammer K, Bock A (1991) J Biol Chem 266:6324

    PubMed  CAS  Google Scholar 

  4. Yuan J, Palioura S, Salazar JC et al (2006) Proc Natl Acad Sci USA 103:18923

    Article  PubMed  CAS  Google Scholar 

  5. Lu J, Zhong L, Lönn ME et al (2009) FASEB J 23:2394

    Article  PubMed  CAS  Google Scholar 

  6. Xu XM, Turanov AA, Carlson BA et al (2010) Proc Natl Acad Sci USA 107:21430

    Article  PubMed  CAS  Google Scholar 

  7. Maenpaa PH, Bernfield MR (1970) Proc Natl Acad Sci USA 67:688

    Article  PubMed  CAS  Google Scholar 

  8. Hatfield DL, Portugal FH (1970) Proc Natl Acad Sci USA 67:1200

    Article  PubMed  CAS  Google Scholar 

  9. Hatfield DL, Diamond AM, Dudock B (1982) Proc Natl Acad Sci USA 79:6215

    Article  PubMed  CAS  Google Scholar 

  10. Carlson BA, Xu XM, Gladyshev VN et al (2005) J Biol Chem 280:5542

    Article  PubMed  CAS  Google Scholar 

  11. Hatfield DL, Carlson BA, Xu XM et al (2006) Prog Nucleic Acid Res Mol Biol 81:97

    Article  PubMed  CAS  Google Scholar 

  12. Leinfelder W, Stadtman TC, Böck A (1989) J Biol Chem 264:9720

    PubMed  CAS  Google Scholar 

  13. Lee BJ, Worland PJ, Davis JN et al (1989) J Biol Chem 264:9724

    PubMed  CAS  Google Scholar 

  14. Gelpi C, Sontheimer EJ, Rodriguez-Sanchez JL (1992) Proc Natl Acad Sci USA 89:9739

    Article  PubMed  CAS  Google Scholar 

  15. Xu XM, Mix H, Carlson BA et al (2005) J Biol Chem 280:41568

    Article  PubMed  CAS  Google Scholar 

  16. Kernebeck T, Lohse AW, Grotzinger J (2001) Hepatology 34:230

    Article  PubMed  CAS  Google Scholar 

  17. Allmang C, Krol A (2006) Biochimie 88:1561

    Article  PubMed  CAS  Google Scholar 

  18. Small-Howard A, Morozova N, Stoytcheva Z et al (2006) Mol Cell Biol 26:2337

    Article  PubMed  CAS  Google Scholar 

  19. Glass RS, Singh WP, Jung W et al (1993) Biochemistry 32:12555

    Article  PubMed  CAS  Google Scholar 

  20. Leinfelder W, Forchhammer K, Veprek B et al (1990) Proc Natl Acad Sci USA 87:543

    Article  PubMed  CAS  Google Scholar 

  21. Kim IY, Stadtman TC (1995) Proc Natl Acad Sci USA 92:7710

    Article  PubMed  CAS  Google Scholar 

  22. Low SC, Harney JW, Berry MJ (1995) J Biol Chem 270:21659

    Article  PubMed  CAS  Google Scholar 

  23. Guimarães MJ, Peterson D, Vicari A et al (1996) Proc Natl Acad Sci USA 93:15086

    Article  PubMed  Google Scholar 

  24. Kim IY, Guimaraes MJ, Zlotnik A (1997) Proc Natl Acad Sci USA 94:418

    Article  PubMed  CAS  Google Scholar 

  25. Kim TS, Yu MH, Chung YW et al (1999) Mol Cells 9:422

    PubMed  CAS  Google Scholar 

  26. Tamura T, Yamamoto S, Takahata M et al (2004) Proc Natl Acad Sci USA 101:16162

    Article  PubMed  CAS  Google Scholar 

  27. Carlson BA, Xu XM, Kryukov GV et al (2004) Proc Natl Acad Sci USA 101:12848

    Article  PubMed  CAS  Google Scholar 

  28. Xu XM, Carlson BA, Irons R et al (2007) Biochem J 404:115

    Article  PubMed  CAS  Google Scholar 

  29. Forchhammer K, Leinfelder W, Boesmiller K et al (1991) J Biol Chem 266:6318

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health NCI Intramural Research Program and the Center for Cancer Research (to D.L.H.) and by the National Institutes of Health Grants (to V.N.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dolph L. Hatfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xu, XM., Turanov, A.A., Carlson, B.A., Yoo, MH., Gladyshev, V.N., Hatfield, D.L. (2011). Selenocysteine Biosynthesis and the Replacement of Selenocysteine with Cysteine in the Pathway. In: Hatfield, D., Berry, M., Gladyshev, V. (eds) Selenium. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1025-6_2

Download citation

Publish with us

Policies and ethics