Skip to main content

Abstract

The lens capsule is the outer lining of the crystalline lens, and its elastic properties directly influence accommodation. Elasticity of the lens capsule and accommodative amplitude decrease over time, due to physiologic, age-related changes. The anterior capsule thickens by approximately 1.2 % per year due to regeneration of lens epithelial cells [1]. Some believe that, as the anterior capsule thickens, it may impede the ability of the lens to become more spherical during accommodation. In addition to a reduction in elasticity, the tensile strength of the anterior capsule also decreases with time [1]. While the elastic and strength changes in the anterior capsule are independent of cataract formation, these characteristics are relevant to small incision cataract surgery, as the strength, thickness, and elasticity of the capsule opening influence the safety of the procedure as well as the refractive outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krag S, Olsen T, Andreassen TT. Biomechanical characteristics of the human anterior lens capsule in relation1 to age. Invest Ophthalmol Vis Sci. 1997;38: 357–63.

    PubMed  CAS  Google Scholar 

  2. Krag S, Thim K, Corydon L. Stretching capacity of capsulorhexis: an experimental study on animal cadaver eyes. Eur J Implant Refract Surg. 1990;2:43–5.

    Google Scholar 

  3. Thim K, Krag S, Corydon L. Stretching capacity of capsulorhexis and nucleus delivery. J Cataract Refract Surg. 1991;17:27–31.

    PubMed  CAS  Google Scholar 

  4. Seibel BS. Phacodynamic: mastering the tools and techniques of phacoemulsification surgery. 4th ed. Thorofare, NJ: SLACK Incorporated; 2005.

    Google Scholar 

  5. Hill W, Uy H. Effective lens position following laser anterior capsulotomy. In: Proceedings of the American Society of Cataract and Refractive Surgery (ASCRS) 2011 annual meeting, femtosecond laser cataract surgery session 4-E, 29 March 2011, San Diego, CA.

    Google Scholar 

  6. Cekiç O, Batman C. The relationship between capsulorhexis size and anterior chamber depth relation. Ophthalmic Surg Lasers. 1999;30(3):185–90.

    PubMed  Google Scholar 

  7. Yanoff M, Duker JS, Augsburger JJ. Yanoff & Duker’s ophthalmology. 3rd ed. Saint Louis, MO: Mosby; 2008.

    Google Scholar 

  8. Marques FF, Marques DM, Osher RH, Osher JM. Fate of anterior capsule tears during cataract surgery. J Cataract Refract Surg. 2006;32:1638–42.

    Article  PubMed  Google Scholar 

  9. Muhtaseb M, Kalhoro A, Ionides A. A system for preoperative stratification of cataract patients according to risk of intraoperative complications. Br J Ophthalmol. 2004;88:1242–6.

    Article  PubMed  CAS  Google Scholar 

  10. Unal M, Yücel I, Sarici A, et al. Phacoemulsification with topical anesthesia: resident experience. J Cataract Refract Surg. 2006;32:1361–5.

    Article  PubMed  Google Scholar 

  11. LeBoyer RM, Werner L, Snyder ME, et al. Acute haptic-induced ciliary sulcus irritation associated with single-piece AcrySof intraocular lenses. J Cataract Refract Surg. 2005;31:1421–7.

    Article  PubMed  Google Scholar 

  12. Piette S, Canlas OAQ, Tran HV, et al. Ultrasound biomicroscopy in uveitis-glaucoma-hyphema syndrome. Am J Ophthalmol. 2002;133(6):839–41.

    Article  PubMed  Google Scholar 

  13. Asaria RH, Salmon JF, Skinner AR, et al. Electron microscopy findings on an intraocular lens in the uveitis, glaucoma, hyphema syndrome. Eye. 1997;11: 827–9.

    Article  PubMed  Google Scholar 

  14. Joo CK, Shin JA, Kim JH. Capsular opening contraction after continuous curvilinear capsulorhexis and intraocular lens implantation. J Cataract Refract Surg. 1996;22:585–90.

    PubMed  CAS  Google Scholar 

  15. Werner L, Pandey SK, Apple DJ, et al. Anterior capsule opacification: correlation of pathological findings with clinical sequelae. Ophthalmology. 2001;107: 1675–81.

    Article  Google Scholar 

  16. Davison JA. Capsule contraction syndrome. J Cataract Refract Surg. 1993;19:582–9.

    PubMed  CAS  Google Scholar 

  17. Ram J, Apple DJ, Peng Q, et al. Update on fixation of rigid and foldable posterior chamber intraocular lenses. Part II. Choosing the correct haptic fixation and intraocular lens design to help eradicate posterior capsule opacification. Ophthalmology. 1999;106: 883–90.

    Article  PubMed  CAS  Google Scholar 

  18. Hollick EJ, Spalton DJ, Meacock WR. The effect of capsulorhexis size on posterior capsular opacification: one-year results of a randomized prospective trial. Am J Ophthalmol. 1999;128(3):271–9.

    Article  PubMed  CAS  Google Scholar 

  19. Keates RH, Steinert RF, Puliafito CA, Maxwell SK. Long-term follow-up of Nd:YAG laser posterior capsulotomy. J Am Intraocul Implant Soc. 1984;10: 164–8.

    PubMed  CAS  Google Scholar 

  20. Javitt JC, Street DA, Tielsch JM, Wang Q, et al. National outcomes of cataract extraction. Retinal detachment and endophthalmitis after outpatient cataract surgery. Ophthalmology. 1994;101:100–5.

    PubMed  CAS  Google Scholar 

  21. Stark WJ, Worthen D, Holladay JT, Murray G. Neodymium:YAG lasers. An FDA report. Ophthalmology. 1985;92:209–12.

    PubMed  CAS  Google Scholar 

  22. Norrby S. Sources of error in intraocular lens power calculation. J Cataract Refract Surg. 2008;34: 368–76.

    Article  PubMed  Google Scholar 

  23. Lim LH, Lee SY, Ang CL. Factors affecting the predictability of SRK II in patients with normal axial length undergoing phacoemulsification surgery. Singapore Med J. 2009;50(2):120–5.

    PubMed  CAS  Google Scholar 

  24. Landers J, Goggin M. Comparison of refractive outcomes using immersion ultrasound biometry and IOLMaster biometry. Clin Exp Ophthalmol. 2009; 37(5):285–9.

    Google Scholar 

  25. Chow J, et al. Refractive enhancement after accommodating and apodized diffractive multifocal IOL implantation: indications, rates and outcomes. In: Proceedings of the European Society of Cataract and Refractive Surgery (ESCRS) 2010 annual meeting, aspheric IOLs/multifocal IOLs session, 07 September 2010.

    Google Scholar 

  26. Guttman C. Laser vision correction useful for enhancing outcomes of presbyopia-correcting IOLs. 2009. http://www.eurotimes.org/09June/LaserVisionCorrection.pdf. Accessed 21 May 2011.

  27. Chang D. Mastering refractive IOLs: the art and science. Thorofare, NJ: SLACK Incorporated; 2008. p. 761 [Chapter 209].

    Google Scholar 

  28. Choi J, Schwiegerling J. Optical performance measurement and night driving simulation of ReSTOR, ReZoom, and Tecnis multifocal intraocular lenses in a model eye. J Cataract Refract Surg. 2008;24:218–22.

    Google Scholar 

  29. McLeod SD, Vargas LG, Portney V, Ting A. Synchrony dual-optic accommodating intraocular lens. Part 1: Optical and biomechanical principles and design considerations. J Cataract Refract Surg. 2007;33:37–46.

    Article  PubMed  Google Scholar 

  30. Ossma IL, Galvis A, Vargas LG, Trager MJ, Vagefi MR, McLeod SD. Synchrony dual-optic accommodating intraocular lens. Part 2: Pilot clinical evaluation. J Cataract Refract Surg. 2007;33:47–52.

    Article  PubMed  Google Scholar 

  31. Juhasz T, Djotyan G, Loesel FH, et al. Applications of femtosecond lasers in corneal surgery. Laser Phys. 2000;10:495–500.

    Google Scholar 

  32. Stern D, Schoenlein RW, Puliafito CA, et al. Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625 nm. Arch Ophthalmol. 1989;107:587–92.

    Article  PubMed  CAS  Google Scholar 

  33. Niemz MH. Laser–tissue interactions: fundamentals and applications. 3rd ed. Berlin: Springer; 1996.

    Google Scholar 

  34. Palanker DV, Blumenkranz MS, Andersen D, Wiltberger M, Marcellino G, et al. Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography. Sci Transl Med. 2010;2:58ra85.

    Article  PubMed  Google Scholar 

  35. Nagy Z, Takacs A, Filkom T, Sarayba M. Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. J Refract Surg. 2009;25:1053–8.

    Article  PubMed  Google Scholar 

  36. Frey RW, Teuma EV, O’Suilleabhain D. Evaluation of the mechanical properties of the crystalline lens capsule following photodisruption capsulotomy and continuous curvilinear capsulorhexis. In: Poster#1141, D1103, Proceedings of the annual meeting of the Association for Research in Vision and Ophthalmology (ARVO), 3 May 2009, Fort Lauderdale, FL.

    Google Scholar 

  37. Friedman NJ, Palanker DV, Schuele G, et al. Femtosecond laser capsulotomy. J Cataract Refract Surg. 2011;37:1189–98.

    Article  PubMed  Google Scholar 

  38. Yeilding R, Villar-Kuri J, Naranjo-Tackman R, et al. Evaluation of size and shape of anterior lens capsules after photodisruption laser capsulotomy and continuous curvilinear capsulorhexis. In: Poster, D1107 #1145, Proceedings of the annual meeting of the Association for Research in Vision and Ophthalmology (ARVO), 05 May 2011, Fort Lauderdale, FL.

    Google Scholar 

  39. Tackman RN, Kuri JV, Nichamin LD, Edwards K. Anterior capsulotomy with an ultrashort-pulse laser. J Cataract Refract Surg. 2011;37:819–24.

    Article  PubMed  Google Scholar 

  40. Auffarth GU, Ruiz, LA, Reddy KP. Feasibility study of femtosecond laser cataract surgery. In: Proceedings of the American Society of Cataract and Refractive Surgery (ASCRS) 2011 annual meeting, femtosecond laser cataract surgery session 1-E, 26 March 2011, San Diego, CA.

    Google Scholar 

  41. Slade SG, Steinert RF, Donnenfeld ED, Doane JF. Femtosecond lasers in refractive cataract surgery. In: Proceedings of the American Academy of Ophthalmology (AAO) 2010 annual meeting. Course Number 596, October 2010.

    Google Scholar 

  42. Nagy Z, Miháltz K, Kranitz K, et al. Effect of femtosecond laser vs. manual capsulotomy on IOL centration. In: Proceedings of the American Society of Cataract and Refractive Surgery (ASCRS) 2011 annual meeting, femtosecond laser cataract surgery session 1-E, 26 March 2011, San Diego, CA.

    Google Scholar 

  43. Park TK, Chung SK, Baek NH. Changes in the area of the anterior capsule opening after intraocular lens implantation. J Cataract Refract Surg. 2002;28:1613–7.

    Article  PubMed  Google Scholar 

  44. Hayashi K, Hayashi H. Intraocular lens factors that may affect anterior capsule contraction. Ophthal-mology. 2005;112:286–92.

    Article  PubMed  Google Scholar 

  45. Vukich JA, Culbertson WW, Batlle JF, Seibel J, et al. Characterization of femtosecond anterior capsulotomies. In: Proceedings of the American Society of Cataract and Refractive Surgery (ASCRS) 2011 annual meeting, femtosecond laser cataract surgery session 4-E, 29 March 2011, San Diego, CA.

    Google Scholar 

  46. Nagy ZZ, Kranitz K, Takacs AI, et al. Comparison of intraocular lens decentration parameters after femtosecond and manual capsulotomies. J Refract Surg. 2011;27:564–9.

    Article  PubMed  Google Scholar 

  47. Kranitz K, Takacs A, Mihaltz K, et al. Femtosecond laser capsulotomy and manual continuous curvilinear capsulorrhexis parameters and their effects on intraocular lens centration. J Refract Surg. 2011;27: 558–63.

    Article  PubMed  Google Scholar 

  48. Hill W, Uy H. Effective lens position following laser anterior capsulotomy. In: Proceedings of the American Academy of Ophthalmology (AAO) 2011 annual meeting, femtosecond laser cataract surgery free paper session, 23 October 2011, Orlando, FL.

    Google Scholar 

  49. Slade SG. Comparison of effective lens position manual vs. femtosecond laser. In: Proceedings of the American Society of Cataract and Refractive Surgery (ASCRS) 2011 annual meeting, femtosecond laser cataract surgery session 4-E, 29 March 2011, San Diego, CA.

    Google Scholar 

  50. Holladay JT. Refractive power calculations for intraocular lenses in the phakic eye. AJO. 1993;116:63–6.

    CAS  Google Scholar 

  51. Chang DF, Campbell JR. Intraoperative floppy iris syndrome associated with tamsulosin. J Cataract Refract Surg. 2005;31(4):664–73.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeleine C. O’Meara M.S., B.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

O’Meara, M.C., Talamo, J.H., Friedman, N.J., Koch, D.D. (2013). Laser Capsulotomy. In: Krueger, R., Talamo, J., Lindstrom, R. (eds) Textbook of Refractive Laser Assisted Cataract Surgery (ReLACS). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1010-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1010-2_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1009-6

  • Online ISBN: 978-1-4614-1010-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics