Skip to main content

The Future of ReLACS and Femtosecond Laser Ocular Surgery

  • Chapter
  • First Online:
Textbook of Refractive Laser Assisted Cataract Surgery (ReLACS)

Abstract

When speaking about the future, there is always a tradeoff between imaginative speculation and a natural forecasting of trends and events. As this is one of the first books published on this subject, much of the material in this book is new. One might consider it speculation to say that femtosecond (FS) laser technology will have a dramatic impact and be fully embraced by the field. If that statement were made 10 years ago, it would be speculation. The fact is that FS laser technology has already had a dramatic impact on refractive corneal surgery over these past 10 years, and it is now poised to see a similar dramatic impact on refractive cataract surgery. Although laser refractive cataract surgery (LARCS) is only just beginning, it is a reality, and hence it is not unreasonable to say that its impact in the field is more than just speculation, but rather a natural forecasting of the trends and events we have seen thus far. What are those events and trends?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shousha MA, Yoo SH, Kymionis GD, Ide T, Feuer W, Karp CL, O’Brien TP, Culbertson WW, Alfonso E. Long-term results of femtosecond laser-assisted sutureless anterior lamellar keratoplasty. Ophthalmology. 2011;118(2):315–23.

    Article  PubMed  Google Scholar 

  2. Buzzonetti L, Laborante A, Petrocelli G. Standardized big-bubble technique in deep anterior lamellar keratoplasty assisted by the femtosecond laser. J Cataract Refract Surg. 2010;36(10):1631–6.

    Article  PubMed  Google Scholar 

  3. Price Jr FW, Price MO, Grandin JC, Kwon R. Deep anterior lamellar keratoplasty with femtosecond-laser zigzag incisions. J Cataract Refract Surg. 2009;35(5):804–8.

    Article  PubMed  Google Scholar 

  4. Gorovoy MS. Descemet-stripping automated endothelial keratoplasty. Cornea. 2006;25(8):886–9.

    Article  PubMed  Google Scholar 

  5. Meisler DM, Dupps Jr WJ, Covert DJ, Koenig SB. Use of an air-fluid exchange system to promote graft adhesion during Descemet’s stripping automated endothelial keratoplasty. J Cataract Refract Surg. 2007;33(5):770–2.

    Article  PubMed  Google Scholar 

  6. Terry MA, Ousley PJ. Small-incision deep lamellar endothelial keratoplasty (DLEK): six-month results in the first prospective clinical study. Cornea. 2005;24(1):59–65.

    Article  PubMed  Google Scholar 

  7. Terry MA, Hoar KL, Wall J, Ousley P. Histology of dislocations in endothelial keratoplasty (DSEK and DLEK): a laboratory-based, surgical solution to dislocation in 100 consecutive DSEK cases. Cornea. 2006;25(8):926–32.

    Article  PubMed  Google Scholar 

  8. Krueger RR, Juhasz T, Gualano A, Marchi V. The picosecond laser for nonmechanical laser in situ keratomileusis. J Refract Surg. 1998;14(4):467–9.

    PubMed  CAS  Google Scholar 

  9. Sekundo W, Kunert K, Russmann C, Gille A, Bissmann W, Stobrawa G, Sticker M, Bischoff M, Blum M. First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: six-month results. J Cataract Refract Surg. 2008;34(9):1513–20.

    Article  PubMed  Google Scholar 

  10. Shah R, Shah S, Sengupta S. Results of small incision lenticule extraction: all-in-one femtosecond laser refractive surgery. J Cataract Refract Surg. 2011;37(1):127–37.

    Article  PubMed  Google Scholar 

  11. Seyeddain O, Riha W, Hohensinn M, Nix G, Dexl AK, Grabner G. Refractive surgical correction of presbyopia with the AcuFocus small aperture corneal inlay: two-year follow-up. J Refract Surg. 2010;26(10):707–15.

    Article  PubMed  Google Scholar 

  12. Kirkwood BJ, Hendicott PL, Read SA, Pesudovs K. Repeatability and validity of lens densitometry measured with Scheimpflug imaging. J Cataract Refract Surg. 2009;35(7):1210–5.

    Article  PubMed  Google Scholar 

  13. Macsai MS, Padnick-Silver L, Fontes BM. Visual outcomes after accommodating intraocular lens implantation. J Cataract Refract Surg. 2006;32(4):628–33.

    Article  PubMed  Google Scholar 

  14. Ossma IL, Galvis A, Vargas LG, Trager MJ, Vagefi MR, McLeod SD. Synchrony dual-optic accommodating intraocular lens. Part 2: Pilot clinical evaluation. J Cataract Refract Surg. 2007;33(1):47–52.

    Article  PubMed  Google Scholar 

  15. Alió JL, Ben-nun J, Rodríguez-Prats JL, Plaza AB. Visual and accommodative outcomes 1 year after implantation of an accommodating intraocular lens based on a new concept. J Cataract Refract Surg. 2009;35(10):1671–8.

    Article  PubMed  Google Scholar 

  16. Koopmans SA, Terwee T, Glasser A, Wendt M, Vilupuru AS, van Kooten TG, Norrby S, Haitjema HJ, Kooijman AC. Accommodative lens refilling in rhesus monkeys. Invest Ophthalmol Vis Sci. 2006;47(7):2976–84.

    Article  PubMed  Google Scholar 

  17. Tahi H, Hamaoui M, Parel J-M, Fantes F. A technique for small peripheral capsulorhexis. J Cataract Refractive Surg. 1999;25:744–7.

    Article  CAS  Google Scholar 

  18. Kessler J. Experiments in refilling the lens. Arch Ophthalmol. 1964;71:412–7.

    Article  PubMed  CAS  Google Scholar 

  19. Kessler J. Refilling the rabbit lens. Further experiments. Arch Ophthalmol. 1966;76(4):596–8.

    Article  PubMed  CAS  Google Scholar 

  20. Kessler J. Lens refilling and regrowth of lens substance in the rabbit eye. Ann Ophthalmol. 1975;7(8):1059–62.

    PubMed  CAS  Google Scholar 

  21. Agarwal LP, Angra SK, Khosla PK, Tandon HD. Lens regeneration in mammals: I. Rabbits (after extracapsular extraction). Orient Arch Ophthalmol. 1964;2:1–17.

    Google Scholar 

  22. Agarwal LP, Angra SK, Khosla PK, Tandon HD. Lens regeneration in mammals: II. Monkeys (after extracapsular extraction). Orient Arch Ophthalmol. 1964;2:47–59.

    Google Scholar 

  23. Agarwal LP, Angra SK, Tandon HD. Lens regeneration in mammals: III. Rabbits (after intracapsular extraction). Orient Arch Ophthalmol. 1964;2:95–100.

    Google Scholar 

  24. Agarwal LP, Narsimhan EC, Mohan M. Experimental lens refilling. Orient Arch Ophthalmol. 1967;5:205–12.

    Google Scholar 

  25. Parel JM, Treffers WF, Gelender H, Norton EWD. Phaco-Ersatz: a new approach to cataract surgery. Ophthalmology. 1981;88(9 Suppl):95.

    Google Scholar 

  26. Parel JM, Gelender H, Trefers WF, Norton EWD. Phaco-Ersatz: cataract surgery designed to preserve accommodation. Graefe’s Arch Clin Exp Ophthalmol. 1986;224:165–73.

    Article  CAS  Google Scholar 

  27. Haefliger E, Parel J-M, Fantes F, Norton EWD, Anderson D, Forster RK, Hernandez E, Feuer WJ. Accommodation of an endocapsular silicone lens (Phaco-Ersatz) in the non-human primate. Ophthalmology. 1987;94:471–7.

    PubMed  CAS  Google Scholar 

  28. Haefliger E, Parel J-M. Accommodation of an endocapsular silicone lens (Phaco-Ersatz) in the old rhesus monkey. Refract Corneal Surg. 1994;10:550–5.

    CAS  Google Scholar 

  29. Barraquer J. Lentilles intraoculaires 1949–1994. Phaco-Ersatz 2001. An Inst Barraquer. 1993–1994;24:27–36.

    Google Scholar 

  30. Gindi JJ, Wan WL, Schanzlin DJ. Endocapsular cataract surgery: I. Surgical technique. Cataract. 1985;2:6–10.

    Google Scholar 

  31. Lucke K, Hettlich HJ, Kreiner CF. A method of lens extraction for the injection of liquid intraocular lenses. Ger J Ophthalmol. 1992;1(5):342–5.

    PubMed  CAS  Google Scholar 

  32. Hettlich HJ, Lucke K, Kreiner CF. Light-induced endocapsular polymerization of injectable lens refilling materials. Ger J Ophthalmol. 1992;1(5):346–9.

    PubMed  CAS  Google Scholar 

  33. Hettlich HJ, Lucke K, Asiyo-Vogel MN, Schulte M, Vogel A. Lens refilling and endocapsular polymerization of an injectable intraocular lens: in vitro and in vivo study of potential risks and benefits. J Cataract Refract Surg. 1994;20:115–23.

    PubMed  CAS  Google Scholar 

  34. Hettlich HJ, Lucke K, Asiyo-Vogel M, Vogel A. Experimental studies of the risks of endocapsular polymerization of injectable intraocular lenses. Ophthalmologe. 1995;92(3):329–34.

    PubMed  CAS  Google Scholar 

  35. Hettlich HJ, Asiyo-Vogel M. Experimental experiences with balloon-shaped capsular sac implantation with reference to accommodation outcome in intraocular lenses. Ophthalmologe. 1996;93(1):73–5.

    PubMed  CAS  Google Scholar 

  36. Nishi O, Hara T, Sakka Y, Hayashi H, Nakamae K, Yamada Y. Refilling the lens with inflatable endocapsular balloon. Dev Ophthalmol. 1991;22:122–5.

    PubMed  CAS  Google Scholar 

  37. Nishi O, Hara T, Hara T, Sakka Y, Hayashi F, Nakamae K, Yamada Y. Refilling the lens with a inflatable endocapsular balloon: surgical procedure in animal eyes. Graefe’s Arch Clin Exp Ophthalmol. 1992;230:47–55.

    Article  CAS  Google Scholar 

  38. Nishi O, Nakai Y, Yamada Y, Mizumoto Y. Amplitudes of accommodation of primate lenses refilled with two types of inflatable endocapsular balloons. Arch Ophthalmol. 1993;111(12):1677–84.

    Article  PubMed  CAS  Google Scholar 

  39. Sakka Y, Hara T, Yamada Y, Hara T, Hayashi F. Accommodation in primate eyes after implantation of refilled endocapsular balloon. Am J Ophthalmol. 1996;121:210–2.

    PubMed  CAS  Google Scholar 

  40. Hara T, Sakka Y, Sakanishi K, Yamamda Y, Nakamae K, Hayashi F. Complications associated with endocapsular balloon implantation in rabbit eyes. Cataract Refract Surg. 1994;20:507–12.

    CAS  Google Scholar 

  41. Nishi O, Nishi K, Mano C, Ichihara M, Honda T. Controlling the capsular shape in lens refilling. Arch Ophthalmol. 1997;115(4):507–10.

    Article  PubMed  CAS  Google Scholar 

  42. Nishi O, Nishi K, Mano C, Ichihara M, Honda T. Lens refilling with injectable silicone in rabbit eyes. J Cataract Refract Surg. 1998;24(7):975–82.

    PubMed  CAS  Google Scholar 

  43. Nishi O, Nishi K. Accommodation amplitude after lens refilling with injectable silicone by sealing the capsule with a plug in primates. Arch Ophthalmol. 1998;116(10):1358–61.

    PubMed  CAS  Google Scholar 

  44. Fernandez V, Fragoso MA, Lamar P, Orozco MA, Dubovy S, Willcox M, Parel J-M. Efficiency of various drugs in the prevention of Posterior Capsular Opacification (PCO). J Refract Cataract Surg. 2004;30(12):2598–605.

    Article  Google Scholar 

  45. Takesue Y, Mui MM, Hachiya T, Parel J-M. Comparative photodynamic effect of Rose Bengal, Erytrocin B and DHE on lens epithelial cells. In: Parel J-M, Ren Q, editors. Ophthalmic technologies III. Proc SPIE 1993;1877:323–7.

    Google Scholar 

  46. Behar-Cohen F, David T, D’Hermies F, Pouliquen YM, Buechler Y, Nova MP, Houston LL, Courtois Y. In vivo inhibition of lens regrowth by fibroblast growth factor 2-saporin. Invest Ophthalmol Vis Sci. 1995;36:2434–48.

    PubMed  CAS  Google Scholar 

  47. Hao X, Jeffery JL, Wilkie JS, Meijs GF, Clayton A, Watling JD, Ho A, Fernandez V, Acosta C, Yamamoto H, Aly MG, Parel J-M, Hughes TC. Functionalised polysiloxanes as injectable, in situ curable accommodating intraocular lens. Biomaterials. 2010;31(32):8153–63.

    Article  PubMed  CAS  Google Scholar 

  48. Borja D, Siedlecki D, de Castro A, Uhlhorn S, Ortiz S, Arrieta E, Parel JM, Marcos S, Manns F. Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient. Biomed Opt Exp. 2010;1(5):1331–40.

    Article  Google Scholar 

  49. Manns F, Maceo B, Ho A, Parel J-M. Contribution of the refractive index gradient to the spherical aberration of the human crystalline lens. ARVO. Invest Ophthalmol Vis Sci. 2011;52 [E-Abstract 3406].

    Google Scholar 

  50. Olson R, Mamalis N, Haugen B. A light adjustable lens with injectable optics. Curr Opin Ophthalmol. 2006;17(1):72–9.

    Article  PubMed  Google Scholar 

  51. Urs R, Manns F, Ho A, Borja D, Amelinckx A, Smith J, Jain R, Augusteyn R, Parel J-M. Shape of the isolated ex-vivo human crystalline lens. Vis Res. 2009;49(1):74–83.

    Article  PubMed  Google Scholar 

  52. Urs R, Ho A, Manns F, Parel J-M. Age-dependent Fourier model of the shape of the isolated ex-vivo human crystalline lens. Vis Res. 2010;50(11):1041–7.

    Article  PubMed  Google Scholar 

  53. Ruggeri M, Uhlhorn S, De Freitas C, Manns F, Parel J-M. Real-time imaging of accommodation using extended depth spectral domain OCT. ARVO. Invest Ophthalmol Vis Sci. 2011;52 [E-Abstract 3402].

    Google Scholar 

  54. Kim E, Uhlhorn SR, Erhmann K, Borja D, Parel J-M. Semi-automated analysis of ex vivo accommodation simulated OCT crystalline lens image. J Biomed Opt. 2011;16(5):056003.

    Article  PubMed  Google Scholar 

  55. Binder S, Falkner-Radler CI, Hauger C, Phd HM, Glittenberg C. Feasibility of intrasurgical spectral-domain optical coherence tomography. Retina. 2011 Jan 26 [Epub ahead of print].

    Google Scholar 

  56. Ehlers JP, Tao YK, Farsiu S, Maldonado R, Izatt JA, Toth CA. Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging. Invest Ophthalmol Vis Sci. 2011;52(6):3153–9.

    Article  PubMed  Google Scholar 

  57. Koopmans SA, Terwee T, van Kooten TG. Prevention of capsular opacification after accommodative lens refilling surgery in rabbits. Biomaterials. 2011;32(25):5743–55.

    Article  PubMed  CAS  Google Scholar 

  58. Parrish II RK. Bascom palmer eye institute atlas of ophthalmology. Philadelphia, PA: Current Medicine; 1999.

    Google Scholar 

  59. Von Helmholtz H. Mechanism of accommodation. In: Southall JPC, editor. Helmholtz’s treatise on physiological optics (trans: Southall in 1924, original German in 1909); 1962.

    Google Scholar 

  60. Glasser A, Kaufman PL. The mechanism of accommodation in primates. Ophthalmology. 1999;106(5):863–72.

    Article  PubMed  CAS  Google Scholar 

  61. Strenk S, Semmlow J, DeMarco J. Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study. Invest Ophthalmol Vis Sci. 1999;40:1162–9.

    PubMed  CAS  Google Scholar 

  62. Fisher RF. The elastic constants of the human lens. J Physiol. 1971;212(1):147–80.

    PubMed  CAS  Google Scholar 

  63. Glasser A, Campbell MC. Presbyopia and the optical changes in the human crystalline lens with age. Vis Res. 1998;38(2):209–29.

    Article  PubMed  CAS  Google Scholar 

  64. Myers R, Krueger RR. Novel approaches to correction of presbyopia with laser modification of the crystalline lens. J Refract Surg. 1998;14:136–9.

    PubMed  CAS  Google Scholar 

  65. Vogel A, Busch S, Jungnickel K, Birngruber R. Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses. Lasers Surg Med. 1994;15(1):32–43.

    Article  PubMed  CAS  Google Scholar 

  66. Krueger RR, Sun XK, Stroh J, Myers R. Experimental increase in accommodative potential after neodymium: yttrium-aluminum-garnet laser photodisruption of paired cadaver lenses. Ophthalmology. 2001;108(11):2122–9.

    Article  PubMed  CAS  Google Scholar 

  67. Krueger RR, Kuszak J, Lubatschowski H, et al. First safety study of femtosecond laser photodisruption in animal lenses: tissue morphology and cataractogenesis. J Cataract Refract Surg. 2005;31(12):2386–94.

    Article  PubMed  Google Scholar 

  68. Gerten G, Ripken T, Breitenfeld P, et al. In vitro and in vivo investigations on the treatment of presbyopia using femtosecond lasers. Der Ophthalmologe: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 2007;104(1):40–6.

    Article  CAS  Google Scholar 

  69. Pierscionek BK. Age-related response of human lenses to stretching forces. Exp Eye Res. 1995;60(3):325–32.

    Article  PubMed  CAS  Google Scholar 

  70. Glasser A, Campbell MC. Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vis Res. 1999;39(11):1991–2015.

    Article  PubMed  CAS  Google Scholar 

  71. Kuszak JR, Mazurkiewicz M, Zoltoski R. Computer modeling of secondary fiber development and growth: I. Nonprimate lenses. Mol Vis. 2006;12:251–70.

    PubMed  Google Scholar 

  72. Vogel A, Noack J, Huttman G, Paltauf G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B. 2005;81:1015–47.

    Article  CAS  Google Scholar 

  73. Loesel FH, Niemz MH, Bille JF, Juhasz T. Laser-induced optical breakdown on hard and soft tissue and its dependence on the pulse duration: experiment and model. IEEE J Quant Electron. 1996;32:1717–22.

    Article  CAS  Google Scholar 

  74. Giguere D, Olivie G, Vidal F, et al. Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling. J Opt Soc Am A. 2007;24:1562–8.

    Article  CAS  Google Scholar 

  75. Ding L, Blackwell R, Künzler JF, Knox WH. Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining. Opt Exp. 2006;14:11901–9.

    Article  CAS  Google Scholar 

  76. Ding L, Cancado LG, Novotny L, et al. Micro-Raman spectroscopy of refractive index microstructures in silicone-based hydrogel polymers created by high-repetition-rate femtosecond laser micromachining. J Opt Soc Am B. 2009;26:595–602.

    Article  CAS  Google Scholar 

  77. Ding L, Knox WH, Bühren J, Nagy LJ, Huxlin KR. Intra-tissue Refractive Index Shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator. Invest Ophthalmol Vis Sci. 2008;49:5332–9.

    Article  PubMed  Google Scholar 

  78. Ding L, Jani D, Linhardt J, et al. Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers. Opt Exp. 2008;16:21914–21.

    Article  CAS  Google Scholar 

  79. Knox WH, Huxlin KR. Writing 3D refractive index modifications in ophthalmic polymer & ocular tissue—a novel means of altering refraction & biomechanics with minimal cellular damage. Engineering the Eye III. Benasque, Spain; 2011.

    Google Scholar 

  80. Sahler R, Bille JF, Zhou S, Aguilera R, Schanzlin DJ. Non-invasive in-situ power adjustment of intraocular lenses by refractive index shaping. Ft. Lauderdale, FL: ARVO; 2011.

    Google Scholar 

  81. Kim H-C, Härtner S, Hampp N. Single- and two-photon absorption induced photocleavage of dimeric coumarin linkers: Therapeutic versus passive photocleavage in ophthalmologic applications. J Photochem Photobiol A: Chem. 2008;197:239–44.

    Article  CAS  Google Scholar 

  82. Hampp N. IOLs controlled by 2-photon processes. Engineering the Eye III. Benasque, Spain; 2011.

    Google Scholar 

  83. Nagy LJ, Ding L, Xu L, Knox WH, Huxlin KR. Potentiation of femtosecond laser Intratissue Refractive Index Shaping (IRIS) in the living cornea with sodium fluorescein. Invest Ophthalmol Vis Sci. 2010;51:850–6.

    Article  PubMed  Google Scholar 

  84. Li DY, Borkman RF. Photodamage to calf lenses in vitro by excimer laser radiation at 308, 337, and 350 nm. Invest Ophthalmol Vis Sci. 1990;31:2180–4.

    PubMed  CAS  Google Scholar 

  85. Vogel A, Capon MR, Asiyo-Vogel MN, Birngruber R. Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina. Invest Ophthalmol Vis Sci. 1994;35:3032–44.

    PubMed  CAS  Google Scholar 

  86. Xu L, Knox WH, DeMagistris M, Wang N, Huxlin KH. Non-invasive Intra-tissue Refractive Index Shaping (IRIS) of the cornea with blue femtosecond laser light. Invest Ophthalmol Vis Sci. 2011;52(11):8148–55.

    Google Scholar 

  87. Babcock HW. Adaptive optics revisited. Science. 1990;249:253–7.

    Article  PubMed  CAS  Google Scholar 

  88. Lorenz RD. Planetary science: the weather on Titan. Science. 2000;290:467–8.

    Article  PubMed  CAS  Google Scholar 

  89. Liang J, Grimm B, Goelz S, Bille JF. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. J Opt Soc Am A Opt Image Sci Vis. 1994;11:1949–57.

    Article  PubMed  CAS  Google Scholar 

  90. Hong X, Thibos LN. Longitudinal evaluation of optical aberrations following laser in situ keratomileusis surgery. J Refract Surg. 2000;16:S647–50.

    PubMed  CAS  Google Scholar 

  91. Mrochen M, Kaemmerer M, Seiler T. Wavefront-guided laser in situ keratomileusis: early results in three eyes. J Refract Surg. 2000;16(2):116–21.

    PubMed  CAS  Google Scholar 

  92. Roorda A. Applications of adaptive optics scanning laser ophthalmoscopy. Optom Vis Sci. 2010;87:260–8.

    PubMed  Google Scholar 

  93. Rocha KM, Vabre L, Chateau N, Krueger RR. Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator. J Refractive Surg. 2010;26(1):52–6.

    Article  Google Scholar 

  94. Chen Y, Ratnam K, Sundquist SM, Lujan B, Awaquari R, Gudiseva VH, Roorda A, Duncan JL. Cone photoreceptor abnormalities correlate with vision loss in patients with Starguardt disease. Invest Ophthalmol Vis Sci. 2011;52:3281–92.

    Article  PubMed  Google Scholar 

  95. Hansen A, Ripken T, Heisterkamp A. Focal spot shaping for femtosecond laser pulse photodisruption through turbid media Trans SPIE, 2011.

    Google Scholar 

  96. Shechtman DL, Dunbar MT. The expanding spectrum of vitreomacular traction. Optometry. 2009;80:681–7.

    Article  PubMed  Google Scholar 

  97. Karatas M, Ramirez JA, Ophir A. Diabetic vitreopapillary traction and macular oedema. Eye (Lond). 2005;19:676–8.

    Article  CAS  Google Scholar 

  98. Chai D, Chaudhary G, Mikula E, Sun H, Juhasz T. 3D finite element model of aqueous outflow to predict the effect of femtosecond laser created partial thickness drainage channels. Lasers Surg Med. 2008;40:188–95.

    Article  PubMed  Google Scholar 

  99. Tam J, Roorda A. Speed quantification and tracking of moving objects in adaptive optics scanning laser ophthalmoscopy. J Biomed Opt. 2011;16:036002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge and thank Brien Holden and his team, as well as Fabrice Manns, Esdras Arrieta, and the team at the Ophthalmic Biophysics Center at the University of Miami for their contribution toward the section on capsular refilling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald R. Krueger M.D., M.S.E. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Krueger, R.R., Parel, JM.A., Huxlin, K.R., Knox, W.H., Hohla, K. (2013). The Future of ReLACS and Femtosecond Laser Ocular Surgery. In: Krueger, R., Talamo, J., Lindstrom, R. (eds) Textbook of Refractive Laser Assisted Cataract Surgery (ReLACS). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1010-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1010-2_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1009-6

  • Online ISBN: 978-1-4614-1010-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics