Skip to main content

A Short History of Controlled Drug Release and an Introduction

  • Chapter
  • First Online:
Controlled Release in Oral Drug Delivery

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

The acquisition and the development of knowledge on how drugs exert their pharmacological effect, particularly information such as dose response, onset, and duration of action and pharmacodynamic and pharmacokinetic relationships has demanded attention to and stimulated interest in delivering drugs at rates (and to locations) that optimize their effects. Controlling drug release from the medication has accordingly evolved as a multidisciplinary science, requiring expertise spanning such disciplines as polymer science, engineering technologies, and awareness of the complexities and vagaries of ­gastrointestinal conditions that affect transit of dosage forms. Much has been achieved but there is still much to learn. This chapter outlines the historical evolution of concepts, practices, and achievements in providing better delivery systems for drugs so that they are better medications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noyes AA, Whitney WR (1897) The rate of solution of solid substances in their own solutions. J Am Chem Soc 19:930–934

    Article  Google Scholar 

  2. Martindale WH, Wescott WW (1924) The extra pharmacopoeia, vol 1, 18th edn. H.K. Lewis, London, pp 682–683

    Google Scholar 

  3. de Gennes P-G (2004) La Memoire du College de France. “Ce n’est pas en perfectionnant la bougie que l’on invente l’électricité”

    Google Scholar 

  4. Bell B (1858) The therapeutic relations of opium and belladonna to each other. Edinb Med J 4:1–7

    Google Scholar 

  5. Fiset P, Cohane C, Browne S, Brand SC, Shafer SL (1995) Biopharmaceutics of a new transdermal fentanyl patch. Anesthesiology 83:459–469

    Article  PubMed  CAS  Google Scholar 

  6. Folkman J (1990) How the field of controlled-release technology began, and its central role in the development of angiogenesis research. Biomaterials 11:615–618

    Article  PubMed  CAS  Google Scholar 

  7. Hoffman AS (2008) The origins and evolution of “controlled” drug delivery systems. J Control Rel 132:153–163

    Article  CAS  Google Scholar 

  8. Lazarus J, Cooper J (1961) Absorption, testing and clinical evaluation of oral prolonged-action drugs. J Pharm Sci 50:715

    Google Scholar 

  9. Florence AT (1992) Generic medicines: a question of quality. In: Wells FO (ed) Medicines: responsible prescribing. Queen’s University Press, Belfast, pp 63–83

    Google Scholar 

  10. Florence AT (1987) Sustained release theophylline preparations: pitfalls in generic prescribing. In: Fairfax AJ (ed) Therapeutics in respiratory medicine. Royal Society of Medicine Symposium Series 117, pp 23–32

    Google Scholar 

  11. Jonkmann JHG (1989) Food interactions with sustained release theophylline preparations. Clin Pharmacokinet 16:162–179

    Article  Google Scholar 

  12. Brockedon T (1843) Shaping pills, lozenges and black lead in dies. GB Patent 9977

    Google Scholar 

  13. Brockedon’s Patent. Process Pharm J 3:1843–1844

    Google Scholar 

  14. Pariente L (1996) Comprimés Chap. 6 in Naissance et Evolution de Quinze Formes Pharmaceutiques. Editions Louis Pariente, Paris, pp 94–118

    Google Scholar 

  15. Dunton J (1875) Improvement in the manufacture of pills. US Patent 168,240

    Google Scholar 

  16. Carter C (1878) Improvement in coated compressed medicaments. US Patent 207,013

    Google Scholar 

  17. Ellzey EF (National Aniline Company) (1931) Device for administering medicaments. US Patent 1,815,902

    Google Scholar 

  18. Kraus F (1870) Improvements in putting up medicines. US Patent 108,034

    Google Scholar 

  19. Bird JC (American Cyanamid) (1948) Casting gelatin tablets. US Patent 2,552,027

    Google Scholar 

  20. Ritchie J (1893) Brief notes of several cases of acute diarrhoea treated with keratin-coated carbolic acid pills. Lancet 142:1305–1306

    Article  Google Scholar 

  21. Dumez AG (1921) A contribution to the history of the development of enteric capsules. J Am Pharm Assoc 10:372–376. cited by B.E. Jones (2004), The history of the medicinal capsule, in Podczeck F, Jones BE (eds) Pharmaceutical capsules, 2nd edn. Pharmaceutical Press, London

    Google Scholar 

  22. Lille DG, Shepheard S (1917) A report on the treatment of Entamoeba histolytica “carriers” with emetine bismuth iodide giving a comparison between keratin coated and salol-coated pills. Lancet 190:418–419

    Article  Google Scholar 

  23. Cowen DL (2002) Swallowing the pill. Apothecary’s Cabinet 4, p 6

    Google Scholar 

  24. Gorley JT, Lee CO (1938) A study of enteric coatings. J Am Pharm Assoc 27:379–384

    Google Scholar 

  25. Praetorius E, Faber JH (1950) Om tabletters henfald og passage geenem esophagus af ventrikel. Ugeskrift for Laeger 112:628–631

    PubMed  CAS  Google Scholar 

  26. Freestone DS (1969) Formulation and therapeutic efficacy of drugs used in clinical trials. Lancet 294:98–99

    Article  Google Scholar 

  27. Evans KT, Roberts GM (1976) Where do all the tablets go? Lancet 308:1237–1239

    Article  Google Scholar 

  28. Channer KS (1990) Adverse reactions to the transit of dosage forms. In: Florence AT, Salole EG (eds) Formulation factors in adverse reactions. Wright, London, pp 75–95 (and references therein)

    Google Scholar 

  29. Thompson HO, Lee CO (1944) History, literature and theory of enteric coatings. J Am Pharm Assoc Sci Ed 34:135–138

    Google Scholar 

  30. Grönberg J (1919) Acta Med Scand 52:227–268

    Google Scholar 

  31. Thompson HO, Lee CO (1944) A study of enteric coatings. J Am Pharm Asssoc Sci Ed 27:138–142

    Google Scholar 

  32. Jack D (1962) Prolongation of drug action. Pharm J 188:581–585

    Google Scholar 

  33. Riseman JF, Altman G, Koretsky S (1958) Nitroglycerin and other nitrates in the treatment of angina pectoris. Circulation 17:22–39

    PubMed  CAS  Google Scholar 

  34. Russek HI, Zohman BL, Drumm AE et al (1955) Long-acting coronary vasodilating drugs: Metamine, Paveril, Nitroglyn and Peritrate. Circulation 12:169–175

    PubMed  CAS  Google Scholar 

  35. Genung LB (1938) (Eastman Kodak) US Patent 2,123,460

    Google Scholar 

  36. Greminger GK et al (1959) (Dow Chemical Co) US Patent 2,887,440

    Google Scholar 

  37. Rowe RC (1984) Material used in the film coating of oral dosage forms. In: Florence AT (ed) Critical reports on applied chemistry, Materials used in pharmaceutical formulation. Blackwells, Oxford

    Google Scholar 

  38. Theeuwes F (1975) Elementary osmotic pump. J Pharm Sci 64:1987–1991

    Article  PubMed  CAS  Google Scholar 

  39. Rose S, Nelson JF (1955) A continuous long term injector. Aust J Exp Med 33:415–429

    Article  CAS  Google Scholar 

  40. Theeuwes F, Higuchi T, Zaffaroni A, Michaels AS (1973) Belgian Patent 800,485

    Google Scholar 

  41. Theeuwes F, Higuchi T(1974) (Alza Corp) US Patent 3,845,770

    Google Scholar 

  42. Bjarnason I, Macpherson AJS (1994) Intestinal toxicity of non-steroidal anti-inflammatory drugs. Pharmacol Ther 62:145–157

    Article  PubMed  CAS  Google Scholar 

  43. The Committee on Safety of Medicines (Aug 1983) Osmosin (Controlled release indomethacin) Current Problems, No 11

    Google Scholar 

  44. Cree IA, Walker MA et al (1985) Osmosin and ileal ulceration: a case report. Scott Med J 30:40–41

    PubMed  CAS  Google Scholar 

  45. Day TK (1983) Intestinal perforation associated with osmotic slow release capsules. Br Med J 287:1671–1672

    Article  CAS  Google Scholar 

  46. Celin A (1984) Intestinal perforation associated with osmotic slow release capsules. Br Med J 288:240–241

    Google Scholar 

  47. Laidler P, Maslin SC, Gilhome RW (1985) What’s new in Osmosin and intestinal perforation? Pathol Res Pract 180:74–76

    PubMed  CAS  Google Scholar 

  48. Malaterre V, Ogorka J, Loggia N, Gurny R (2009) Oral osmotically driven systems: 30 years of development and clinical use. Eur J Pharm Biopharm 73:311–323

    Article  PubMed  Google Scholar 

  49. Santus G, Baker RW (1995) Osmotic drug delivery: a review of the patent literature. J Control Rel 35:1–21

    Article  CAS  Google Scholar 

  50. Abrahams A, Linnell WH (1957) Oral depot therapy with a new long-acting dexamphetamine salt. Lancet 27:1317–1318

    Article  Google Scholar 

  51. Chaudhry NC, Saunders L (1956) Sustained release drugs from ion-exchange resins. J Pharm Pharmacol 8:975–986

    Article  PubMed  CAS  Google Scholar 

  52. Elder DP (2005) Pharmaceutical applications of ion-exchange resins. J Chem Ed 82:575–587

    Article  CAS  Google Scholar 

  53. Mahore JG, Wadher KJ et al (2010) Ion exchange resins: pharmaceutical application and recent advancement. Int J Pharm Sci Rev Res 1:8–13

    CAS  Google Scholar 

  54. Anon (1949) Prolonged penicillin action. Lancet 253:872–873

    Google Scholar 

  55. Romansky MJ, Rottman GE (1944) A method of prolonging the action of penicillin. Science 100:196–198

    Article  PubMed  CAS  Google Scholar 

  56. Romansky MJ, Rottman GE (1945) Penicillin blood levels for twenty four hours following a single intramuscular injection of calcium penicillin in beeswax and peanut oil. N Engl J Med 233:577–582

    Article  PubMed  CAS  Google Scholar 

  57. Monash S (1947) The use of bismuth, silver and mercury salts of penicillin for the prolongation of penicillin blood levels. J Invest Dermatol 9:157

    PubMed  CAS  Google Scholar 

  58. Sullivan NP, Symmes AT, Millar HC, Rhodehamel HW Jr (1948) A new penicillin for prolonged blood levels. Science 107:169–170

    Article  PubMed  CAS  Google Scholar 

  59. Salivar CJ, Hedger FH, Brown EV (1948) Crystalline procaine penicillin. J Am Chem Soc 70:1287

    Google Scholar 

  60. Boger WP, Flippin HF (1949) Penicillin plasma concentrations. J Am Med Assoc 139:1131

    Google Scholar 

  61. Young MY, Andrews GWS, Montgomery DM (1949) Procaine penicillin. Lancet 253:863–865

    Article  Google Scholar 

  62. Emery JL, Rose IM, Stewart SM, Wayne EJ (1949) The use in children of procaine penicillin with aluminium monostearate. Br Med J 1:1110–1112

    Article  PubMed  CAS  Google Scholar 

  63. Thomas EW, Lyons RH et al (1949) Newer repository penicillin products. J Am Med Assoc 137:1517–1519

    Google Scholar 

  64. Crommelin DJA, de Blaey CJ (1980) In vitro release studies on drugs suspended in non-polar media. I. Release of sodium chloride from suspensions in liquid paraffin. Int J Pharm 5:305–316 (see also idem. II. The release of paracetamol and chloramphenicol from suspensions in ­liquid paraffin. Int J Pharm 6:29–42

    Google Scholar 

  65. Szabo JL, Edwards CD, Bruce WF (1951) N.N’ dibenzylethylene diamine penicillin: preparation and properties. Antibiot Chemother 1:499

    CAS  Google Scholar 

  66. Seifter J, Glassman JM, Begany AJ, Blumenthal A (1951) Antibiot Chemother 1:504–508

    CAS  Google Scholar 

  67. Minto CF, Howe C et al (1997) Pharmacokinetics and pharmacodynamics of nandrolone esters in oil vehicle: effects of ester, injection site and injection volume. J Pharmacol Exp Ther 281:93–102

    PubMed  CAS  Google Scholar 

  68. Junkman K (1957) Long acting steroids in reproduction. Recent Progr Horm Res 13:380–419

    Google Scholar 

  69. Kelly M (1947) Failure of oil-soluble anaesthetics to give prolonged analgesia. Lancet 249:710–711

    Article  Google Scholar 

  70. Larsen SW, Thomsen AE, Rinvar E, Friis GJ, Larsen C (2001) Effect of drug lipophilicity on in vitro release from oil vehicles using nicotinic acid esters as model prodrug derivatives. Int J Pharm 216:83–93

    Article  PubMed  CAS  Google Scholar 

  71. Curry SH, Whelpton R, de Schipper PJ, Vranckx S, Schiff AA (1979) Kinetics of fluphenazine after fluphenazine dihydrochloride, enanthate and decanoate administration to man. Br J Clin Pharmacol 7:325–331

    PubMed  CAS  Google Scholar 

  72. Larsen SW, Larsen C (2009) Critical factors influencing the in vivo performance of long-acting lipophilic solutions- impact on in vitro release method design. AAPS J 11(4):762–770

    Article  PubMed  CAS  Google Scholar 

  73. Honrath WL, Wolff A, Meli A (1963) The influence of the amount of solvent (sesame oil) on the degree and duration of action of subcutaneously administered testosterone and its propionate. Steroids 2:425–428

    Article  CAS  Google Scholar 

  74. Deanesly R, Parkes AS (1937) Factors affecting the effectiveness of administered hormones. Proc R Soc B Med 124:279–298

    Article  CAS  Google Scholar 

  75. Deanesly R, Parkes AS (1943) Further experiments on the administration of hormones by the subcutaneous implantation of tablets. Lancet 242:500–502

    Article  Google Scholar 

  76. Noble RL (1938) Effect of synthetic oestrogenic substances on the body growth and endocrine organs of the rat. Lancet 232:192–195

    Article  Google Scholar 

  77. Bishop PMF (1938) A clinical experiment in oestrin therapy. Br Med J 1:939–941

    Article  PubMed  CAS  Google Scholar 

  78. Parkes AS (1942) Administration of non-steroid substances by the implantation technique. J Endocinol 3:220–233

    Article  Google Scholar 

  79. Folkman J, Long DM (1964) The use of silicone rubber as a carrier for prolonged drug therapy. J Surg Res 4:139–142

    Article  PubMed  CAS  Google Scholar 

  80. Dzuik PJ, Cook B (1966) Passage of steroids through silicone rubber. Endocrinology 78:208

    Article  Google Scholar 

  81. Mischell DR (1975) Intravaginal rings for contraceptive use. An editorial comment. Contraception 12:249–251

    Article  Google Scholar 

  82. Hutchinson FG, Furr BJA (1990) Biodegradable polymer systems for the sustained release of polypeptides. J Control Rel 13:279–294

    Article  CAS  Google Scholar 

  83. Furr BJA, Hutchinson FG (1992) A biodegradable delivery system for peptides; preclinical experience with the gonadotrophin-releasing hormone agonist Zoladex™. J Control Rel 21:117–128

    Article  CAS  Google Scholar 

  84. Parkes AS (1938) Effective absorption of hormones. Br Med J 1:371–373

    Article  PubMed  CAS  Google Scholar 

  85. Anon. (1941) Absorption of implanted hormone tablets. Lancet 238:318

    Google Scholar 

  86. Dang W, Daviau T, Ying P et al (1996) Effects of Gliadel wafer initial molecular weight on the erosion of wafer and release of BCNU. J Control Rel 42:83–92

    Article  CAS  Google Scholar 

  87. Langer R (1983) Implantable controlled release systems. Pharm Ther 21:35–51

    Article  CAS  Google Scholar 

  88. Li Y, Shawgo RS, Tyler B et al (2004) In vivo release from a drug delivery MEMS device. J Control Rel 100:211–219

    Article  CAS  Google Scholar 

  89. Grüntzig A, Senning A, Siegenthaler WE (1979) Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. New Engl J Med 301:61–68

    Article  PubMed  Google Scholar 

  90. Muller DWM, Topol EJ (1991) Implantable devices in the coronary artery. Trends Cardiovasc Med 1:225–232

    Article  PubMed  CAS  Google Scholar 

  91. Anon. (1949) Aerosols by inhalation. Lancet 254:660

    Google Scholar 

  92. Rooth G (1949) Inhalation of liquid aerosols. Acta Med Scand 133(Suppl. 228)

    Google Scholar 

  93. Beigel H (1865) On the inhalation of atomized fluids. Lancet 86:35–36

    Article  Google Scholar 

  94. Beigel H (1865) On the inhalation of atomized fluids. Lancet 86:114–116

    Article  Google Scholar 

  95. Mutch N (1944) Inhalation of chemotherapeutic substances. Lancet 244:775–780

    Article  Google Scholar 

  96. Heubner W (1920) Z ges Exp Med 10:35

    Google Scholar 

  97. Hückel R (1925) Z ges Phys Ther 30:317

    Google Scholar 

  98. Anon. (1984) The Nebuliser epidemic. Lancet 324:789–790

    Google Scholar 

  99. Edwards DA, Hanes J, Caponetti G et al (1997) Large porous particles for pulmonary delivery. Science 276:1868–1872

    Article  PubMed  CAS  Google Scholar 

  100. Anon. (1929) Atopham administered by inunction. Lancet 2:413–414

    Google Scholar 

  101. Rothman S (1943) The principles of percutaneous absorption. J Lab Clin Med 28:1305–1321

    CAS  Google Scholar 

  102. For example: Telfer SV (1923) The administration of insulin by inunction. Br Med J 1:715

    Google Scholar 

  103. Major RH, Delp M (1936) Cutaneous absorption of insulin. Proc Soc Exp Biol Med 35:429

    Google Scholar 

  104. Zondek B, Bromberg YM, Shapiro B (1942) Percutaneous application of sulfonamides in animals and men. Proc Soc Exp Biol Med 50:116

    CAS  Google Scholar 

  105. Hadgraft J, Lane M (2005) Skin permeation: the years of enlightenment. Int J Pharm 305:2–12

    Article  PubMed  CAS  Google Scholar 

  106. Shelmire JB (1958) Observations on the role of vehicles in percutaneous absorption. AMA Arch Derm 78:191–195

    PubMed  Google Scholar 

  107. Sarkany I, Hadgraft JW, Caron GA, Barret CW (1965) The role of vehicles in the percutaneous absorption of corticosteroids. Br J Dermatol 77:569–575

    Article  PubMed  CAS  Google Scholar 

  108. Herrmann F, Salzberger MB, Baer RL (1942) New penetrating vehicles and solvents. Science 96:451–452

    Article  PubMed  CAS  Google Scholar 

  109. Gemmell DHO, Morrison JC (1957) The release of medicinal substances from topical applications and their passage through the skin. J Pharm Pharmacol 9:641–656

    Article  PubMed  CAS  Google Scholar 

  110. Smith CC (1955) Failure to demonstrate absorption of hydrocortisone when topically applied to the human skin. Ann NY Acad Sci 61:517–519

    Article  PubMed  CAS  Google Scholar 

  111. Malkinson FD, Ferguson EH (1955) Percutaneous absorption of hydrocortisone-4-C14 in two human subjects. J Invest Dermatol 25:281–283

    Article  PubMed  CAS  Google Scholar 

  112. Leduc S (1900) Introduction des substances medicamenteuses dans la profondeur des tissus par le courant electrique. Ann d’Electrobiol 3:545–560

    Google Scholar 

  113. Erlanger G (1929) Iontophoretic medication in ophthalmology. Arch Phys Ther 20:16

    Google Scholar 

  114. Fleming N (1943) Iontotherapy (Ionic medication, iontophoresis, ionization) as an aid in ophthalmic therapeutics. Br J Ophthalmol 27:354–360

    Article  PubMed  CAS  Google Scholar 

  115. Deutsch D (1934) Device for inserting medicaments into the body by iontophoresis. US Patent 1,967,927

    Google Scholar 

  116. Abramson HA, Engel MG (1942) Skin reactions. XII. Patterns produced in the skin by electrophoresis of dyes. Arch Dermatol Syph 44:190

    Google Scholar 

  117. Clark WG, Strakosch EA, Nordlum C (1942) Penetration of sulfonamides through intact skin by iontophoresis and other means of local application. Proc Soc Exp Biol Med 50:43

    CAS  Google Scholar 

  118. Hoogstraate AJ, Srinivasan V, Simms SM, Higuchi WI (1994) Iontophoretic enhancement of peptides: behaviour of leuprolide versus model compounds. J Control Rel 31:41–47

    Article  CAS  Google Scholar 

  119. Guy RH, Kalia YN, Delgado-Charro MB et al (2000) Iontophoresis: electrorepulsion and electroosmosis. J Control Rel 64:129–132

    Article  CAS  Google Scholar 

  120. Yang RK et al (2008) (Monosol Rx) Process for making an ingestible film. US Patent 7,357,891

    Google Scholar 

  121. Zaffaroni A (1971) (Alza Corporation). Bandage for administering drugs. US Patent 3,598,122

    Google Scholar 

  122. Zaffaroni A (1971) (Alza Corporation) Bandage for administering drugs. US Patent 3,598, 123

    Google Scholar 

  123. Gerstel MS, Place VA (1976) Drug delivery device, US Patent 3,964,482

    Google Scholar 

  124. Henry S, McAllister D, Allen MG, Prausnitz MR (1998) Microfabricated microneedles: a novel method to increase transdermal drug delivery. J Pharm Sci 87:922–925

    Article  PubMed  CAS  Google Scholar 

  125. Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Res 56:581–587

    Article  CAS  Google Scholar 

  126. Sedlácek J (1965) Possibility of the application of ophthalmic drugs with the use of gel contact lenses. Ceskoslovenska oftalmologie 21:509–512

    PubMed  Google Scholar 

  127. Wichterle O, Lim D (1960) Hydrophilic gels in biological use. Nature 185:117–118

    Article  Google Scholar 

  128. Ness RA (Alza Corporation) Ocular insert, US Patent 3,618, 604

    Google Scholar 

  129. Armaly MF, Rao KR (1973) The effect of pilocarpine Ocusert with different release rates on ocular pressure. Invest Ophthalmol 12:491–496

    PubMed  CAS  Google Scholar 

  130. Wadleigh JC (1883) Gelatine eye-disk. US Patent 273,410

    Google Scholar 

  131. Chang TMS (1964) Semipermeable microcapsules. Science 146:524–525

    Article  PubMed  CAS  Google Scholar 

  132. Orive G, Hernández RM et al (2004) History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 22:87–91

    Article  PubMed  CAS  Google Scholar 

  133. Brynko C, Scarpelli JA (1961) (National Cash register Company) Process of making dual-walled oil-containing capsules. US Patent 2,969,331

    Google Scholar 

  134. Figge FHJ et al (1969) (AMP Inc) Method of administering therapeutic agents. USP 3,474,777

    Google Scholar 

  135. Kitajama M et al (1972) (Fuji Photo Film Co. and Toyo Jozo Co.) Encapsulation method. US Patent 3,691,090

    Google Scholar 

  136. Kitajima M, Kondo A, Arai F (1976) (Fuji Photo Film Co.) Process of producing aspirin-containing capsules. US Patent 3,951,851

    Google Scholar 

  137. Kramer PA (1974) Albumin microspheres as vehicles for achieving specificity in drug ­delivery. J Pharm Sci 63:1646–1647

    Article  PubMed  CAS  Google Scholar 

  138. Eckman B, Sjöholm I (1975) Use of macromolecules in microparticles. Nature 257:825–826

    Article  Google Scholar 

  139. Kato T, Nemoto R, Mori H, Kumagai I (1978) Microencapsulated mitomycin C therapy in renal cell carcinoma. Lancet 314:479–480

    Google Scholar 

  140. see also Kato T, Nemoto R (1978) Preparation and properties of microencapsulated mitomycin C. IRCS Med Sci 6:311

    Google Scholar 

  141. Lee TK, Sokolski TD, Royer GP (1981) Serum albumin beads: an injectable biodegradable system for sustained release of drugs. Science 213:233–235

    Article  PubMed  CAS  Google Scholar 

  142. Okada H et al (1987) Prolonged release microcapsule production, US Patent 4,652,441

    Google Scholar 

  143. Okada H, Heya T, Ogawa Y, Shimamoto T (1988) One-month release injectable microcapsules of a luteinizing hormone-releasing hormone agonist (leuprolide acetate) for treating experimental endometriosis in rats. J Pharmacol Exp Ther 244:744–750

    PubMed  CAS  Google Scholar 

  144. Okada H, Doken Y, Ogawa Y, Toguchi H (1994) Preparation of three-month depot injectable microspheres of leuprorelin acetate using biodegradable polymers. Pharm Res 11:1143–1147

    Article  PubMed  CAS  Google Scholar 

  145. Chen Y, Willmott N, Anderson J, Florence AT (1988) Haemoglobin, transferrin and albumin/polyaspartic acid microspheres as carriers for the cytotoxic drug adriamycin. I. Ultrastructural appearance and drug content. J Control Rel 8:93–101

    Article  Google Scholar 

  146. Bungenberg de Jong BH (1949) Crystallisation-coacervation-flocculation. In: Kruyt HR (ed) Complex colloid systems. Colloid Science, Vol 2. Elsevier, Amsterdam, pp 232–255, 335–429

    Google Scholar 

  147. Burgess DJ, Carless JE (1985) Manufacture of gelatin/gelatin coacervate microcapsules. Int J Pharm 27:61–70

    Article  CAS  Google Scholar 

  148. Dapper T, Thies C (1978) Statistical models for controlled release microcapsules: rationale and theory. J Membr Sci 4:99–113

    Article  Google Scholar 

  149. Kreuter J (2007) Nanoparticles: a historical perspective. Int J Pharm 331:1–10

    Article  PubMed  CAS  Google Scholar 

  150. Speiser P (1976) Controlled release of drugs from microcapsules and nanocapsules. Acta Pharm Suec 13(Suppl):35

    Google Scholar 

  151. Couvreur P, Kante B, Roland M et al (1979) Polycycanoacrylate nanocapules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol 31:331–332

    Article  PubMed  CAS  Google Scholar 

  152. Hanes J, Cleland JL, Langer R (1997) New advances in microsphere-based single-dose vaccines. Adv Drug Deliv Rev 28:97–119

    Article  PubMed  CAS  Google Scholar 

  153. Higuchi T (1963) Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52:1145–1149

    Article  PubMed  CAS  Google Scholar 

  154. Higuchi WI (1967) Diffusional models useful in biopharmaceutics. Drug release rate processes. J Pharm Sci 56:315–324

    Article  CAS  Google Scholar 

  155. Singh P, Desai SJ, Simonelli AP, Higuchi WI (1967) Release rates of solid drug mixtures dispersed in inert matrices: I. Non-interacting drug mixtures. J Pharm Sci 56:1542–1547

    Article  PubMed  CAS  Google Scholar 

  156. Peppas N (1984) Mathematical modelling of diffusion processes in drug delivery polymeric systems. In: Smolen VF, Ball L (eds) Controlled drug bioavailability, vol 1. Wiley, New York, pp 203–237

    Google Scholar 

Download references

Acknowledgments

I thank Mrs. Michelle Wake and Mr. Peter Field of the Library of The School of Pharmacy, University of London for retrieving copies of some of the older literature. I am also indebted to all those who have written historical reviews on many of the topics covered here.

There have been two Schools of Pharmacy with which I have been associated, at the University of Strathclyde, Glasgow, and in the University of London. In the former I began my research in 1962, so as both a student and researcher have seen some of the history discussed above unfold. My interest in pharmaceutics was piqued by the work that had been done in Glasgow, in wartime on transfusion and pyrogens, on transdermal absorption, atracurium, not to mention the work of my mentor Peter Elworthy on surfactant systems. In London its pedigree included the work of Prof Leonard Saunders in the 1960s with proto-liposomes, diffusion and ion-exchange drug resonates, formed a little part of the history, not all of it recounted here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander T. Florence .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Controlled Release Society

About this chapter

Cite this chapter

Florence, A.T. (2011). A Short History of Controlled Drug Release and an Introduction. In: Wilson, C., Crowley, P. (eds) Controlled Release in Oral Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1004-1_1

Download citation

Publish with us

Policies and ethics