Skip to main content

Preclinical Studies Using Mouse Models of Inflammatory Bowel Disease

  • Chapter
  • First Online:
Crohn's Disease and Ulcerative Colitis

Abstract

Most therapeutic agents used in clinical practice today were originally developed and tested in animal models so that drug toxicity and safety, dose–responses, and efficacy could be determined. Retrospective analyses of preclinical intervention studies using animal models of different diseases demonstrate that only a small percentage of the interventions reporting promising effects translate to clinical efficacy. It is becoming increasingly appreciated that the failure to translate therapeutic efficacy from bench to bedside may be due, in part, to selection of an animal model that may not recapitulate the immunopathologic features of the human disease under investigation. This is especially true for preclinical investigations using mouse models of the inflammatory bowel diseases (IBD; Crohn’s disease, ulcerative colitis). One potential strategy for improving our ability to discover new therapeutics that may have a reasonable chance of success in clinical trials is to identify the most immunologically relevant mouse models of human IBD. This chapter presents a critical evaluation of the different mouse models of IBD and discusses their utility in preclinical studies.

*Contributed equally to the preparation of the manuscript.

Much of this chapter was reproduced from a review entitled “Pharmacological Intervention Studies Using Mouse Models of the Inflammatory Bowel Diseases: Translating Preclinical Data into New Drug Therapies” published in Inflammatory Bowel Diseases, 2011 May;17(5):1229– 45. [This material is reproduced with permission from John Wiley and Sons, Inc.]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuhn R, Lohler J, Rennick D, et al. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75:263–74.

    Article  PubMed  CAS  Google Scholar 

  2. Mombaerts P, Mizoguchi E, Grusby MJ, et al. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell. 1993;75:274–82.

    Article  PubMed  CAS  Google Scholar 

  3. Sadlack B, Merz H, Schorle H, et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell. 1993;75:253–61.

    Article  PubMed  CAS  Google Scholar 

  4. Powrie F, Leach MW, Mauze S, et al. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol. 1993;5:1461–71.

    Article  PubMed  CAS  Google Scholar 

  5. Kirsner JB, Elchlepp J. The production of an experimental ulcerative colitis in rabbits. Trans Assoc Am Physicians. 1957;70:102–19.

    PubMed  CAS  Google Scholar 

  6. Kirsner JB, Elchlepp JG, Goldgraber MB, et al. Production of an experimental ulcerative “colitis” in rabbits. Arch Pathol. 1959;68:392–408.

    PubMed  CAS  Google Scholar 

  7. Kraft SC, Fitch FW, Kirsner JB. Histologic and immunohistochemical features of the Auer “Colitis” in rabbits. Am J Pathol. 1963;43:913–27.

    PubMed  CAS  Google Scholar 

  8. Elson CO, Cong Y, McCracken VJ, et al. Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol Rev. 2005;206:260–76.

    Article  PubMed  Google Scholar 

  9. Maxwell JR, Viney JL. Overview of mouse models of inflammatory bowel disease and their use in drug discovery. Curr Protoc Pharmacol. 2009;47:5.57.1–5.57.19.

    Google Scholar 

  10. Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol. 2002;20:495–549.

    Article  PubMed  CAS  Google Scholar 

  11. Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease. J Clin Invest. 2007;117:514–21.

    Article  PubMed  CAS  Google Scholar 

  12. Uhlig HH, Powrie F. Mouse models of intestinal inflammation as tools to understand the pathogenesis of inflammatory bowel disease. Eur J Immunol. 2009;39:2021–6.

    Article  PubMed  CAS  Google Scholar 

  13. Cho JH, Weaver CT. The genetics of inflammatory bowel disease. Gastroenterology. 2007;133:1327–39.

    Article  PubMed  CAS  Google Scholar 

  14. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–34.

    Article  PubMed  CAS  Google Scholar 

  15. Chidlow Jr JH, Langston W, Greer JJ, et al. Differential angiogenic regulation of experimental colitis. Am J Pathol. 2006;169:2014–30.

    Article  PubMed  CAS  Google Scholar 

  16. Siegmund B, Lehr HA, Fantuzzi G. Leptin: a pivotal mediator of intestinal inflammation in mice. Gastroenterology. 2002;122:2011–25.

    Article  PubMed  CAS  Google Scholar 

  17. Siegmund B, Sennello JA, Lehr HA, et al. Development of intestinal inflammation in double IL-10- and leptin-deficient mice. J Leukoc Biol. 2004;76:782–6.

    Article  PubMed  CAS  Google Scholar 

  18. Te Velde AA, de KF, Sterrenburg E, et al. Comparative analysis of colonic gene expression of three experimental colitis models mimicking inflammatory bowel disease. Inflamm Bowel Dis. 2007;13:325–30.

    Article  Google Scholar 

  19. Vowinkel T, Anthoni C, Wood KC, et al. CD40-CD40 ligand mediates the recruitment of leukocytes and platelets in the inflamed murine colon. Gastroenterology. 2007;132:955–65.

    Article  PubMed  CAS  Google Scholar 

  20. Hawkey CJ, Dube LM, Rountree LV, et al. A trial of zileuton versus mesalazine or placebo in the maintenance of remission of ulcerative colitis. The European Zileuton Study Group For Ulcerative Colitis. Gastroenterology. 1997;112:718–24.

    Article  PubMed  CAS  Google Scholar 

  21. Roberts WG, Simon TJ, Berlin RG, et al. Leukotrienes in ulcerative colitis: results of a multicenter trial of a leukotriene biosynthesis inhibitor, MK-591. Gastroenterology. 1997;112:725–32.

    Article  PubMed  CAS  Google Scholar 

  22. Sandborn WJ. Strategies for targeting tumour necrosis factor in IBD. Best Pract Res Clin Gastroenterol. 2003;17:105–17.

    Article  PubMed  CAS  Google Scholar 

  23. Mahler M, Bristol IJ, Leiter EH, et al. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am J Physiol. 1998;274:G544–51.

    PubMed  CAS  Google Scholar 

  24. Morris GP, Beck PL, Herridge MS, et al. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology. 1989;96:795–803.

    PubMed  CAS  Google Scholar 

  25. Wirtz S, Neufert C, Weigmann B, et al. Chemically induced mouse models of intestinal inflammation. Nat Protoc. 2007;2:541–6.

    Article  PubMed  CAS  Google Scholar 

  26. Yamada Y, Marshall S, Specian RD, et al. A comparative analysis of two models of colitis in rats. Gastroenterology. 1992;102:1524–34.

    PubMed  CAS  Google Scholar 

  27. Okayasu I, Hatakeyama S, Yamada M, et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702.

    PubMed  CAS  Google Scholar 

  28. Fukata M, Michelsen KS, Eri R, et al. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am J Physiol Gastrointest Liver Physiol. 2005;288:G1055–65.

    Article  PubMed  CAS  Google Scholar 

  29. Hans W, Scholmerich J, Gross V, et al. The role of the resident intestinal flora in acute and chronic dextran sulfate sodium-induced colitis in mice. Eur J Gastroenterol Hepatol. 2000;12:267–73.

    Article  PubMed  CAS  Google Scholar 

  30. Kitajima S, Morimoto M, Sagara E, et al. Dextran sodium sulfate-induced colitis in germ-free IQI/Jic mice. Exp Anim. 2001;50:387–95.

    Article  PubMed  CAS  Google Scholar 

  31. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118:229–41.

    Article  PubMed  CAS  Google Scholar 

  32. Kitajima S, Takuma S, Morimoto M. Histological analysis of murine colitis induced by dextran sulfate sodium of different molecular weights. Exp Anim. 2000;49:9–15.

    Article  PubMed  CAS  Google Scholar 

  33. Dieleman LA, Ridwan BU, Tennyson GS, et al. Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology. 1994;107:1643–52.

    PubMed  CAS  Google Scholar 

  34. Krieglstein CF, Cerwinka WH, Sprague AG, et al. Collagen-binding integrin alpha1beta1 regulates intestinal inflammation in experimental colitis. J Clin Invest. 2002;110:1773–82.

    PubMed  CAS  Google Scholar 

  35. Seno H, Miyoshi H, Brown SL, et al. Efficient colonic mucosal wound repair requires Trem2 signaling. Proc Natl Acad Sci U S A. 2009;106:256–61.

    Article  PubMed  CAS  Google Scholar 

  36. Te Velde AA, Verstege MI, Hommes DW. Critical appraisal of the current practice in murine TNBS-induced colitis. Inflamm Bowel Dis. 2006;12:995–9.

    Article  Google Scholar 

  37. Grisham MB, Volkmer C, Tso P, et al. Metabolism of trinitrobenzene sulfonic acid by the rat colon produces reactive oxygen species. Gastroenterology. 1991;101:540–7.

    PubMed  CAS  Google Scholar 

  38. Neurath MF, Fuss I, Kelsall BL, et al. Experimental granulomatous colitis in mice is abrogated by induction of TGF-beta-mediated oral tolerance. J Exp Med. 1996;183:2605–16.

    Article  PubMed  CAS  Google Scholar 

  39. Han X, Ren X, Jurickova I, et al. Regulation of intestinal barrier function by signal transducer and activator of transcription 5b. Gut. 2009;58:49–58.

    Article  PubMed  CAS  Google Scholar 

  40. Pereira-Fantini PM, Judd LM, Kalantzis A, et al. A33 antigen-deficient mice have defective colonic mucosal repair. Inflamm Bowel Dis. 2010;16:604–12.

    PubMed  Google Scholar 

  41. Robinson A, Keely S, Karhausen J, et al. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology. 2008;134:145–55.

    Article  PubMed  CAS  Google Scholar 

  42. Vowinkel T, Kalogeris TJ, Mori M, et al. Impact of dextran sulfate sodium load on the severity of inflammation in experimental colitis. Dig Dis Sci. 2004;49:556–64.

    Article  PubMed  CAS  Google Scholar 

  43. Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology. 2007;132:1359–74.

    Article  PubMed  CAS  Google Scholar 

  44. Edelblum KL, Washington MK, Koyama T, et al. Raf protects against colitis by promoting mouse colon epithelial cell survival through NF-kappaB. Gastroenterology. 2008;135:539–51.

    Article  PubMed  CAS  Google Scholar 

  45. Frey MR, Edelblum KL, Mullane MT, et al. The ErbB4 growth factor receptor is required for colon epithelial cell survival in the presence of TNF. Gastroenterology. 2009;136:217–26.

    Article  PubMed  CAS  Google Scholar 

  46. Neurath MF, Fuss I, Kelsall BL, et al. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med. 1995;182:1281–90.

    Article  PubMed  CAS  Google Scholar 

  47. Fiorucci S, Mencarelli A, Palazzetti B, et al. Importance of innate immunity and collagen binding integrin alpha1beta1 in TNBS-induced colitis. Immunity. 2002;17:769–80.

    Article  PubMed  CAS  Google Scholar 

  48. van Lierop PP, de HC, Lindenbergh-Kortleve DJ, et al. T-cell regulation of neutrophil infiltrate at the early stages of a murine colitis model. Inflamm Bowel Dis. 2010;16:442–51.

    PubMed  Google Scholar 

  49. Uhlig HH, McKenzie BS, Hue S, et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity. 2006;25:309–18.

    Article  PubMed  CAS  Google Scholar 

  50. Feng T, Wang L, Schoeb TR, et al. Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis. J Exp Med. 2010;207:1321–32.

    Article  PubMed  CAS  Google Scholar 

  51. Powrie F. T cells in inflammatory bowel disease: protective and pathogenic roles. Immunity. 1995;3:171–4.

    Article  PubMed  CAS  Google Scholar 

  52. Powrie F, Read S, Mottet C, et al. Control of immune pathology by regulatory T cells. Novartis Found Symp. 2003;252:92–8.

    Article  PubMed  CAS  Google Scholar 

  53. Ostanin DV, Bao J, Koboziev I, et al. T cell transfer model of chronic colitis: concepts, considerations, and tricks of the trade. Am J Physiol Gastrointest Liver Physiol. 2009;296:G135–46.

    Article  PubMed  CAS  Google Scholar 

  54. Ostanin DV, Pavlick KP, Bharwani S, et al. T cell-induced inflammation of the small and large intestine in immunodeficient mice. Am J Physiol Gastrointest Liver Physiol. 2006;290:G109–19.

    Article  PubMed  CAS  Google Scholar 

  55. Kanai T, Kawamura T, Dohi T, et al. TH1/TH2-mediated colitis induced by adoptive transfer of CD4  +  CD45RBhigh T lymphocytes into nude mice. Inflamm Bowel Dis. 2006;12:89–99.

    Article  PubMed  Google Scholar 

  56. Mizoguchi A, Mizoguchi E, Takedatsu H, et al. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity. 2002;16:219–30.

    Article  PubMed  CAS  Google Scholar 

  57. Mizoguchi E, Mizoguchi A, Preffer FI, et al. Regulatory role of mature B cells in a murine model of inflammatory bowel disease. Int Immunol. 2000;12:597–605.

    Article  PubMed  CAS  Google Scholar 

  58. Hirano D, Kudo S. Usefulness of CD4  +  CD45RBhigh. J Pharmacol Sci. 2009;110:169–81.

    Article  PubMed  CAS  Google Scholar 

  59. Dan N, Kanai T, Totsuka T, et al. Ameliorating effect of anti-Fas ligand MAb on wasting disease in murine model of chronic colitis. Am J Physiol Gastrointest Liver Physiol. 2003;285:G754–60.

    PubMed  CAS  Google Scholar 

  60. Fujii R, Kanai T, Nemoto Y, et al. FTY720 suppresses CD4  +  CD44highC. Am J Physiol Gastrointest Liver Physiol. 2006;291:G267–74.

    Article  PubMed  CAS  Google Scholar 

  61. Kanai T, Totsuka T, Uraushihara K, et al. Blockade of B7-H1 suppresses the development of chronic intestinal inflammation. J Immunol. 2003;171:4156–63.

    PubMed  CAS  Google Scholar 

  62. Leon F, Contractor N, Fuss I, et al. Antibodies to complement receptor 3 treat established inflammation in murine models of colitis and a novel model of psoriasiform dermatitis. J Immunol. 2006;177:6974–82.

    PubMed  CAS  Google Scholar 

  63. Liu Z, Geboes K, Colpaert S, et al. Prevention of experimental colitis in SCID mice reconstituted with CD45RBhigh CD4+ T cells by blocking the CD40-CD154 interactions. J Immunol. 2000;164:6005–14.

    PubMed  CAS  Google Scholar 

  64. Manocha M, Rietdijk S, Laouar A, et al. Blocking CD27-CD70 costimulatory pathway suppresses experimental colitis. J Immunol. 2009;183:270–6.

    Article  PubMed  CAS  Google Scholar 

  65. Totsuka T, Kanai T, Uraushihara K, et al. Therapeutic effect of anti-OX40L and anti-TNF-alpha MAbs in a murine model of chronic colitis. Am J Physiol Gastrointest Liver Physiol. 2003;284:G595–603.

    PubMed  CAS  Google Scholar 

  66. Barnes MJ, Powrie F. Regulatory T cells reinforce intestinal homeostasis. Immunity. 2009;31:401–11.

    Article  PubMed  CAS  Google Scholar 

  67. Izcue A, Coombes JL, Powrie F. Regulatory lymphocytes and intestinal inflammation. Annu Rev Immunol. 2009;27:313–38.

    Article  PubMed  CAS  Google Scholar 

  68. Karlsson F, Robinson-Jackson SA, Gray L, et al. Ex vivo generation of regulatory T cells: characterization and therapeutic evaluation in a model of chronic colitis. Methods Mol Biol. 2011;677:47–61.

    Article  PubMed  CAS  Google Scholar 

  69. Dohi T, Fujihashi K, Koga T, et al. T helper type-2 cells induce ileal villus atrophy, goblet cell metaplasia, and wasting disease in T cell-deficient mice. Gastroenterology. 2003;124:672–82.

    Article  PubMed  CAS  Google Scholar 

  70. Dohi T, Fujihashi K, Koga T, et al. CD4  +  CD45RBHi interleukin-4 defective T cells elicit antral gastritis and duodenitis. Am J Pathol. 2004;165:1257–68.

    Article  PubMed  CAS  Google Scholar 

  71. Zhang S, Ostanin DV, Gray L, et al. Chronic lung and liver inflammation in a mouse model of Crohn’s colitis. Gastroenterology. 2010;138:S-272.

    Article  Google Scholar 

  72. Koboziev I, Karlsson F, Zhang S, et al. Pharmacological intervention studies using mouse models of the inflammatory bowel diseases: translating preclinical data into new drug therapies. Inflamm Bowel Dis. 2011;17(5):1229–45.

    Article  PubMed  Google Scholar 

  73. Berg DJ, Davidson N, Kuhn R, et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest. 1996;98:1010–20.

    Article  PubMed  CAS  Google Scholar 

  74. Wilk JN, Bilsborough J, Viney JL. The mdr1a−/− mouse model of spontaneous colitis: a relevant and appropriate animal model to study inflammatory bowel disease. Immunol Res. 2005;31:151–9.

    Article  PubMed  CAS  Google Scholar 

  75. Panwala CM, Jones JC, Viney JL. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J Immunol. 1998;161:5733–44.

    PubMed  CAS  Google Scholar 

  76. Garrett WS, Lord GM, Punit S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 2007;131:33–45.

    Article  PubMed  CAS  Google Scholar 

  77. Maloy KJ, Salaun L, Cahill R, et al. CD4  +  CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med. 2003;197:111–9.

    Article  PubMed  CAS  Google Scholar 

  78. Hue S, Ahern P, Buonocore S, et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med. 2006;203:2473–83.

    Article  PubMed  CAS  Google Scholar 

  79. Asquith MJ, Boulard O, Powrie F, et al. Pathogenic and protective roles of MyD88 in leukocytes and epithelial cells in mouse models of inflammatory bowel disease. Gastroenterology. 2010;139:519–29.

    Article  PubMed  CAS  Google Scholar 

  80. Boulard O, Asquith MJ, Powrie F, et al. TLR2-independent induction and regulation of chronic intestinal inflammation. Eur J Immunol. 2010;40:516–24.

    Article  PubMed  CAS  Google Scholar 

  81. Kullberg MC, Jankovic D, Feng CG, et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J Exp Med. 2006;203:2485–94.

    Article  PubMed  CAS  Google Scholar 

  82. Kontoyiannis D, Pasparakis M, Pizarro TT, et al. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity. 1999;10:387–98.

    Article  PubMed  CAS  Google Scholar 

  83. Matsumoto S, Okabe Y, Setoyama H, et al. Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse P1/Yit strain. Gut. 1998;43:71–8.

    Article  PubMed  CAS  Google Scholar 

  84. Kosiewicz MM, Nast CC, Krishnan A, et al. Th1-type responses mediate spontaneous ileitis in a novel murine model of Crohn’s disease. J Clin Invest. 2001;107:695–702.

    Article  PubMed  CAS  Google Scholar 

  85. Rivera-Nieves J, Bamias G, Vidrich A, et al. Emergence of perianal fistulizing disease in the SAMP1/YitFc mouse, a spontaneous model of chronic ileitis. Gastroenterology. 2003;124:972–82.

    Article  PubMed  Google Scholar 

  86. Hackam DG, Redelmeier DA. Translation of research evidence from animals to humans. JAMA. 2006;296:1731–2.

    Article  PubMed  CAS  Google Scholar 

  87. van der Worp HB, Howells DW, Sena ES, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7:e1000245. doi:10.1371/journal.pmed.1000245.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Some of the work reported in this manuscript was supported by a grant from the NIH (PO1-DK43785, Project 1, Animal Models Core and Histopathology Core).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Grisham PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Karlsson, F., Koboziev, I., Grisham, M.B. (2012). Preclinical Studies Using Mouse Models of Inflammatory Bowel Disease. In: Baumgart, D. (eds) Crohn's Disease and Ulcerative Colitis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0998-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0998-4_16

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0997-7

  • Online ISBN: 978-1-4614-0998-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics