Skip to main content

Understanding Chilling Tolerance Traits Using Arabidopsis Chilling-Sensitive Mutants

  • Chapter
  • First Online:
Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change

Abstract

Many plants of tropical and subtropical origin are severely damaged when exposed to chilling temperatures between 2 and 15°C. In contrast, the cruciferous plant Arabidopsis thaliana is chilling tolerant and, therefore provides an alternative model plant system for the identification of chilling tolerance traits. In this chapter, we describe physiological, biochemical, and molecular responses of Arabidopsis class 1 chilling-sensitive (chs) mutants to low temperatures. These mutants, including chs1, chs2 and chs3, are extremely chilling-sensitive and wilt and turn yellow in just a few days after transfer to low temperatures of 4–13°C. Overall, following exposure to chilling, class 1 chs mutants suffer from: (1) loss of chlorophyll and decrease in photosynthetic efficacy resulting in lack of starch accumulation, (2) damage to cellular membranes resulting in increased electrolyte leakage, and (3) accumulation of the reactive oxygen species (ROS) hydrogen peroxide (H2O2). At the molecular level, transcriptome analysis studies following exposure to 10°C for 48 h using the Affymetrix ATH1 genome array reveal remarkable changes in expression patterns of between 1,500 and 3,000 genes, which are significantly differentially expressed (p≤ 0.05 and up- or down-regulated by a factor of at least 4) in chs1, chs2, and chs3 mutants compared to wild-type (WT) plants. The main functional categories of up-regulated genes by chilling include “stress,” “protein,” and “signaling,” whereas the main categories down-regulated by chilling were “photosynthesis,” “tetrapyrrole synthesis,” “carbohydrate metabolism,” “cell wall,” and “lipid metabolism”. Overall, these and other studies using Arabidopsis chilling-sensitive mutants allow the recognition of major genetic traits crucial for plant survival under chilling conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm climate plants. Trends Plant Sci 6:36–42

    Article  PubMed  CAS  Google Scholar 

  • Araki N, Kusumi K, Masamoto K, Niwa Y, Iba K (2000) Temperature-sensitive Arabidopsis mutant defective in 1-deoxy-D-xylulose 5-phosphate synthase within the plastid non-mevalonate pathway of isoprenoid biosynthesis. Physiol Plant 108:19–24

    CAS  Google Scholar 

  • Bhattacharjee S (2009) Involvement of calcium and calmodulin in oxidative and temperature stress of Amaranthus lividus L. during early germination. J Environ Biol 30:557–562

    PubMed  CAS  Google Scholar 

  • Dong CH, Zolman BK, Bartel B, Lee BH, Stevenson B, Agarwal M, Zhu JK (2009) Disruption of Arabidopsis CHY1 reveals an important role of metabolic status in plant cold stress signaling. Mol Plant 2:59–72

    Article  PubMed  CAS  Google Scholar 

  • Fernandez P, Rienzo D, Fernandez L, Hopp HE, Paniego N, Heinz RA (2008) Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis. BMC Plant Biol 8:11

    Article  PubMed  Google Scholar 

  • Graham D, Patterson BD (1982) Responses of plants to low nonfreezing temperatures: proteins, metabolism, and acclimation. Annu Rev Plant Physiol 33:47–72

    Article  Google Scholar 

  • Hasdai M, Weiss B, Levi A, Samach A, Porat R (2006) Differential responses of Arabidopsis ecotypes to cold, chilling and freezing temperatures. Ann Appl Biol 148:113–120

    Article  Google Scholar 

  • Hugly S, Somerville C (1992) A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiol 99:197–202

    Article  PubMed  CAS  Google Scholar 

  • Hugly S, McCourt P, Browse J, Patterson GW, Somersville C (1990) A chilling sensitive mutant of Arabidopsis with altered steryl-ester metabolism. Plant Physiol 93:1053–1062

    Article  PubMed  CAS  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999) Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc Natl Acad Sci USA 96:13566–13570

    Article  PubMed  CAS  Google Scholar 

  • Kerdnaimongkol K, Woodson WR (1999) Inhibition of catalase by antisense RNA increases susceptibility to oxidative stress and chilling injury in tomato plants. J Amer Soc Hort Sci 124:330–336

    CAS  Google Scholar 

  • Kim HU, Vijayan P, Carlsson AS, Barkan L, Browse J (2010) A Mutation in the LPAT1 gene suppresses the sensitivity of fab1 plants to low temperature. Plant Physiol 153:1135–1143

    Article  PubMed  CAS  Google Scholar 

  • Levitt J (1980) Responses of Plants to Environmental Stresses. Academic, New York, NY

    Google Scholar 

  • Lightner J, Wu J, Browse J (1994) A mutant of Arabidopsis with increased levels of stearic acid. Plant Physiol 106:1443–1451

    PubMed  CAS  Google Scholar 

  • Lynch DV (1990) Chilling injury in plants: The relevance of membrane lipids. In: Katterman F (ed) Environmental Injury to Plants. Academic, San Diego, CA, pp 17–34

    Google Scholar 

  • Lyons JM (1973) Chilling injury in plants. Annu Rev Plant Physiol 24:445–466

    Article  CAS  Google Scholar 

  • Maestrini P, Cavallini A, Rizzo M, Giordoni T, Bernardi R, Durante M, Natalim L (2009) Isolation and expression of low temperature-induced genes in white poplar (Poplus alba). J Plant Physiol 166:1544–1556

    Article  PubMed  CAS  Google Scholar 

  • Markhart AH (1986) Chilling injury: a review of possible causes. HortScience 21:1329–1333

    CAS  Google Scholar 

  • Maruyama S, Yatomi M, Nakamura Y (1990) Response of rice leaves to low temperature. I. Changes in basic biochemical parameters. Plant Cell Physiol 31:303–309

    CAS  Google Scholar 

  • Miquel M, James D, Dooner H, Browse J (1993) Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci USA 90:6208–6212

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–713

    Article  CAS  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial roles of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    Article  PubMed  CAS  Google Scholar 

  • Oufir M, Legay S, Nicot N, Van Moer K, Hoffmann L, Renaut J, Hausman JF, Evers D (2008) Gene expression in potato during cold exposure: changes in carbohydrate and polyamine metabolisms. Plant Sci 175:839–852

    Article  CAS  Google Scholar 

  • Patterson GW, Hugly S, Harrison D (1993) Sterols and phytyl esters of Arabidopsis thaliana under normal and chilling temperatures. Phytochemistry 33:1381–1383

    Article  CAS  Google Scholar 

  • Paull RE (1990) Chilling injury of crops of tropical and subtropical origin. In: Wang CY (ed) Chilling Injury of Horticultural Crops. CRC Press, Boca Raton, FL, pp 17–36

    Google Scholar 

  • Payton P, Webb R, Kornyeyev D, Allen R, Holiday S (2001) Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. J Exp Bot 52:2345–2354

    Article  PubMed  CAS  Google Scholar 

  • Porat R, Guy CL (2007) Arabidopsis as a model system to study chilling tolerance mechanisms in plants. Plant Stress 1:85–92

    Google Scholar 

  • Provart NJ, Gil P, Chen W, Han B, Chang HS, Wang X, Zhu T (2003) Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures. Plant Physiol 132:893–906

    Article  PubMed  CAS  Google Scholar 

  • Routaboul JM, Fischer SF, Browse J (2000) Trienoic Fatty Acids Are Required to Maintain Chloroplast Function at Low Temperatures. Plant Physiol 124:1697–1705

    Article  PubMed  CAS  Google Scholar 

  • Sabehat A, Lurie S, Weiss D (1998) Expression of small heat shock proteins at low temperature: A possible role in protecting against chilling injuries. Plant Physiol 117:651–658

    Article  PubMed  CAS  Google Scholar 

  • Schneider JC, Hugly S, Somerville CR (1995a) Chilling-sensitive mutants of Arabidopsis. Plant Mol Biol Rep 13:11–17

    Article  Google Scholar 

  • Schneider JC, Nielsen E, Somerville CR (1995b) A chilling-sensitive mutant of Arabidopsis is deficient in chloroplast protein accumulation at low temperature. Plant Cell Environ 18:23–32

    Article  CAS  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Mayer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  PubMed  CAS  Google Scholar 

  • Tokuhisa J, Browse J (1999) Genetic engineering of plant chilling tolerance. Genet Eng 21:79–93

    CAS  Google Scholar 

  • Tokuhisa JG, Feldmann KA, LaBrie ST, Browse J (1997) Mutational analysis of chilling tolerance in plants. Plant Cell Environ 20:1391–1400

    Article  Google Scholar 

  • Tokuhisa JG, Vijayan P, Feldmann KA, Browse J (1998) Chloroplast development at low temperatures requires a homolog of DIM1, a yeast gene encoding the 18 S rRNA dimethylase. Plant Cell 10:699–711

    Article  PubMed  CAS  Google Scholar 

  • Van Breusegem F, Slooten L, Stassart J, Botterman J, Moens T, Van Montagu M, Inzé D (1999) Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress. J Exp Bot 50:71–78

    Article  Google Scholar 

  • Vlachonasios KE, Thomashow MF, Triezenberg SJ (2003) Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell 15:626–38

    Article  PubMed  CAS  Google Scholar 

  • Wallis JG, Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41:254–278

    Article  PubMed  CAS  Google Scholar 

  • Wang CY (1990) Chilling Injury of Horticultural Crops. CRC Press, Baca-Raton, FL

    Google Scholar 

  • Wu J, Lightner J, Warwick N, Browse J (1997) Low-temperature damage and subsequent recovery of fab1 mutant Arabidopsis exposed to 2 degrees C. Plant Physiol 113:347–356

    Article  PubMed  CAS  Google Scholar 

  • Xin Z, Browse J (1998) Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci USA 95:7799–7804

    Article  PubMed  CAS  Google Scholar 

  • Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteom 5:484–496

    Article  CAS  Google Scholar 

  • Yang H, Shi Y, Liu J, Guo L, Zhang X, Yang S (2010) A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis. Plant J 63:283–296

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Provart NJ (2003) Transcriptional responses to low temperature and their regulation in Arabidopsis. Can J Bot 81:1168–1174

    Article  CAS  Google Scholar 

  • Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10:290–295

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This chapter is a contribution from the Agricultural Research Organization, the Volcani Center, Bet Dagan, Israel, no. 597/10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Porat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zoldan, D., Band, R.S., Guy, C.L., Porat, R. (2012). Understanding Chilling Tolerance Traits Using Arabidopsis Chilling-Sensitive Mutants. In: Ahmad, P., Prasad, M. (eds) Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0815-4_7

Download citation

Publish with us

Policies and ethics