Skip to main content

Abstract

Abiotic stress is one of the major factors that negatively affect crops yield; therefore, development of stress-tolerant crops is essential for future food security. The stress stimuli are perceived by the plasma membrane and different signals get activated. In response to the stress, expression of many genes gets altered which plays an important role in the transmission of the signals. Various chemicals are also responsible for these signals like calcium (Ca2+), nitric oxide (NO), sugars, abscisic acid (ABA), brassinosteroids (BRs), ethylene, jasmonates (JA), salicylic acid (SA), and auxins. Ca2+ acts as a secondary messenger to perceive the environmental stimuli and transduce them into downstream effectors in order to bring about changes leading to adaptations to stressful conditions or developmental effects. The phytohormones have a role in tolerance and adaptations to plants under abiotic stress. During abiotic stress, cross talk between different signaling pathways is very common. In the present review, we elucidated the role of these chemicals in plant signaling under abiotic stress. The signal transduction pathway involving mitogen-activated protein kinases (MAPK) under abiotic stress is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 5:167–173

    Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    PubMed  CAS  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 77:36–44

    CAS  Google Scholar 

  • Albrecht V, Ritz O, Linder S, Harter K, Kudla J (2001) The NAF domain defines a novel protein-protein interaction module conserved in Ca2  +  -regulated kinases. EMBO J 20:1051–1063

    PubMed  CAS  Google Scholar 

  • Albrecht V, Weinl S, Blazevic D, D’Angelo C, Batistič O, et al. (2003) The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J 36:457–470

    PubMed  CAS  Google Scholar 

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffman T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–1057

    PubMed  CAS  Google Scholar 

  • Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH et al (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24:2579–2589

    PubMed  CAS  Google Scholar 

  • Arnaud N, Murgia I, Boucherez J, Briat JF, Cellier F, Gaymard F (2006) An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFer1 ferritin gene expression. J Biol Chem 281:23579–23588

    PubMed  CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL et al (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415:977–983

    PubMed  CAS  Google Scholar 

  • Asami T, Min YK, Nagata N, Yamagishi K, Takatsuto S, Fujioka S, Murofushi N, Yamaguchi I, Yoshida S (2000) Characterization of Brassinazole, a triazole-type brassinosteriod biosynthesis inhibitor. Plant Physiol 123:93–99

    PubMed  CAS  Google Scholar 

  • Asami T, Nakano T, Fujioka S (2005) Plant brassinosteroid hormones. Vitam Horm 72:479–504

    PubMed  CAS  Google Scholar 

  • Asano T, Hakata M, Nakamura H, Aoki N, Komatsu S, Ichikawa H, Hirochika H, OhsugI R (2011) Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice. Plant Mol Biol 75:179–191

    PubMed  CAS  Google Scholar 

  • Asthana JS, Srivastava HS (1978) Effect of presowing treatment of maize seeds with salicylic acid and ascorbic acid on seedling and nitrogen content. Ind J Plant Physiol 21:150–155

    CAS  Google Scholar 

  • Avanci NC, Luche DD, Goldman GH, Goldman MHS (2010) Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet Mol Res 9:484–505

    PubMed  CAS  Google Scholar 

  • Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription network in plant stress and energy signaling. Nature 448:938–942

    PubMed  CAS  Google Scholar 

  • Baier M, Hemmann G, Holman R, Corke F, Card R, Smith C, Rook F, Bevan MW (2004) Characterization of mutants in Arabidopsis showing increased sugar-specific gene expression, growth, and developmental responses. Plant Physiol 134:81–91

    PubMed  CAS  Google Scholar 

  • Bansal KC, Lenka SK, Tuteja N (2011) Abscisic acid in abiotic stress tolerance: an ‘omics’ approach. In: Tuteja N, Gill SS, Tuteja R (eds) Omics and plant abiotic stress tolerance. Bentham Science, Sharjah, pp 143–150

    Google Scholar 

  • Batistic O, Kudla J (2009) Plant calcineurin B-like proteins and their interacting protein kinases. Biochim Biophys Acta 1793:985–992

    PubMed  CAS  Google Scholar 

  • Batistic O, Sorek N, Schultke S, Yalovsky S, Kudla J (2008) Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis. Plant Cell 20:1346–1362

    PubMed  CAS  Google Scholar 

  • Berger S, Bell E, Mullet JE (1996) Two methyl jasmonate-insensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding. Plant Physiol 111:525–531

    PubMed  CAS  Google Scholar 

  • Berleth T, Sachs T (2001) Plant morphogenesis: long-distance coordination and local patterning. Curr Opin Plant Biol 4:57–62

    PubMed  CAS  Google Scholar 

  • Besson-Bard A, Courtois C, Gauthier A, Dahan J, Dobrowolska G, Jeandroz S, Pugin A, Wendenhenne D (2008) Nitric oxide in plants: production and cross talk with Ca2+ signaling. Mol Plant 1:218–228

    PubMed  CAS  Google Scholar 

  • Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW, Jones RL (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143:1173–1788

    PubMed  CAS  Google Scholar 

  • Bhardwaj D, Sheikh AH, Sinha AK, Tuteja N (2011) Stress induced beta subunit of heterotrimeric G-proteins from Pisum sativum interacts with mitogen activated protein kinase. Plant Signal Behav 6(2):287–292

    PubMed  Google Scholar 

  • Binder BM, Rodríguez FI, Bleecker AB (2010) The copper transporter RAN1 is essential for biogenesis of ethylene receptors in  Arabidopsis. J Biol Chem 285:37263–37270

    PubMed  CAS  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms-getting genomics going. Curr Opin Plant Biol 9:180–188

    PubMed  CAS  Google Scholar 

  • Bouche N, Scharlat A, Snedden W, Bouchez D, Fromm H (2002) A novel family of calmodulin-binding transcription activators in multicellular organisms. J Biol Chem 277:21851–21861

    PubMed  CAS  Google Scholar 

  • Boudsocq M, Laurière C (2005) Osmotic signaling in plants. Multiple pathways mediated by emerging kinase families. Plant Physiol 138:1185–1194

    PubMed  CAS  Google Scholar 

  • Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389

    PubMed  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    PubMed  CAS  Google Scholar 

  • Brodersen P, Petersen M, Bjorn Nielsen H, Zhu S, Newman MA et al (2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532–546

    PubMed  CAS  Google Scholar 

  • Chandler PM, Robertson M (1994) Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 45:113–141

    CAS  Google Scholar 

  • Chang C, Stadler R (2001) Ethylene hormone receptor action in Arabidopsis. Bioessays 23:619–627

    PubMed  CAS  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two component regulators. Science 262:539–544

    PubMed  CAS  Google Scholar 

  • Chen JG (2007) Sweet sensor, surprising partners. Sci STKE 373:7

    Google Scholar 

  • Chen YF, Randlett MD, Findell JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277:19861–19866

    PubMed  CAS  Google Scholar 

  • Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15:1833–1845

    PubMed  CAS  Google Scholar 

  • Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L et al (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52:223–239

    PubMed  CAS  Google Scholar 

  • Cho YH, Yoo SD, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579–589

    PubMed  CAS  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131: 1047–1058

    PubMed  CAS  Google Scholar 

  • Clark KL, Larsen PB, Wang X, Chang C (1998) Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci USA 95:5401–5406

    PubMed  CAS  Google Scholar 

  • Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ (2000) NO way back: nitric oxide and programmed cell death in  Arabidopsis thaliana  suspension cultures. Plant J 24:667–677

    PubMed  CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteriods: essential regulators of plant growth and development. Ann Rev Plant Physiol Plant Mol Biol 49:427–451

    CAS  Google Scholar 

  • Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671–678

    PubMed  CAS  Google Scholar 

  • Cobb MH, Hepler JE, Cheng M, Robbins D (1994) The mitogen-activated protein kinases, ERK1 and ERK2. Semin Cancer Biol 5:261–268

    PubMed  CAS  Google Scholar 

  • Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57:471–478

    PubMed  CAS  Google Scholar 

  • Crawford NM, Galli M, Tischner R, Heimer YM, Okamoto M, Mack A (2006) Response to Zemojtel et al: plant nitric oxide synthase: back to square one. Trend Plant Sci 11:526–527

    CAS  Google Scholar 

  • D’ Angelo C, Weinl S, Batistic O, Pandey GK, Cheong YH et al (2006) Alternative complex formation of the Ca2  +  -regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J 48:857–872

    Google Scholar 

  • Davis RJ (1994) MAPKs: new JNK expands the group. Trends Biochem Sci 19:470–473

    PubMed  CAS  Google Scholar 

  • Day I, Reddy V, Ali GS, Reddy ASN (2002) Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biol 3(10):RESEARCH0056

    PubMed  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396

    PubMed  CAS  Google Scholar 

  • Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA 99:16314–16318

    PubMed  CAS  Google Scholar 

  • Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55:205–212

    PubMed  CAS  Google Scholar 

  • Ding CK, Wang CY, Gross KC, Smith DL (2002) Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214:895–901

    PubMed  CAS  Google Scholar 

  • Divi U, Krishna P (2010) Overexpression of the brassinosteroid biosynthetic gene  AtDWF4  in Arabidopsis  seeds overcomes abscisic acid-induced Inhibition of germination and increases cold tolerance in transgenic seedlings. J Plant Growth Regul 29:385–393

    CAS  Google Scholar 

  • Divi U, Rahman T, Krishna P (2010) Brassinosteroid-mediated abiotic stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151

    PubMed  Google Scholar 

  • Doczi R, Brader G, Pettko-Szandtner A, Rajh I, Djamei A et al (2007) The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell 19:3266–3279

    PubMed  CAS  Google Scholar 

  • Doke N, Miura Y, Leandro MS, Kawakita K (1994) Involvement of superoxide in signal transduction: responses to attack by pathogens, physical and chemical shocks, and UV irradiation. In: Foyer CH, Mullineaux PM (eds) Causes of photo oxidative stress and amelioration of defense systems in plants. CRC, Boca Raton, FL, pp 177–179

    Google Scholar 

  • Duerr B, Gawienowski M, Ropp T, Jacobs T (1993) MsERK1: a mitogen-activated protein kinase from a flowering plant. Plant Cell 5:87–96

    PubMed  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    PubMed  CAS  Google Scholar 

  • Engelberth J, Alborn HT, Schmeize EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785

    PubMed  CAS  Google Scholar 

  • Erdei L, Kolbert Z (2008) Nitric oxide as a potent signalling molecule in plants. Acta Biol Szeged 52:1–58

    Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    PubMed  CAS  Google Scholar 

  • Feng XH, Derynck R (1997) A kinase subdomain of transforming growth factor-β (TGF-β) type I receptor determines the TGF- β intracellular signaling specificity. EMBO J 16:3912–3923

    PubMed  CAS  Google Scholar 

  • Feys BJF, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronative are male sterile, insensitive to methyl jasmonate, and resistant to bacterial pathogen. Plant Cell 6:751–759

    PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid in seeds and seedlings. Plant Cell 14:S15–S45

    PubMed  CAS  Google Scholar 

  • Floryszak-Wieczorek J, Arasimowicz M, Milczarek G, Jelen H, Jackowiak H (2007) Only an early nitric oxide burst and the following wave of secondary nitric oxide generation enhanced effective defense responses of pelargonium to a necrotrophic pathogen. New Phytol 175:718–730

    PubMed  CAS  Google Scholar 

  • Frandsen GI, Müller-Uri F, Nielsen M, Mundy J, Skriver K (1996) Novel plant Ca2  +  -binding protein expressed in response to abscisic acid and osmotic stress. J Biol Chem 271:343–348

    PubMed  CAS  Google Scholar 

  • Franza S, Ehlerta B, Liesea A, Kurtha J, Cazaléb AC, Romeisa T (2011) Calcium-Dependent Protein Kinase CPK21 Functions in Abiotic Stress Response in Arabidopsis thaliana. Mol Plant 4:83–96

    Google Scholar 

  • Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA 98:373–378

    PubMed  CAS  Google Scholar 

  • Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in  Arabidopsis. Plant Cell 19:485–494

    PubMed  CAS  Google Scholar 

  • Gamble RL, Coonfield ML, Schaller GE (1998) Histidine kinase activity of the ETR1 ethylene receptor from  Arabidopsis. Proc Natl Acad Sci USA 95:7825–7829

    PubMed  CAS  Google Scholar 

  • Gao Z, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE (2003) Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 278:34725–34732

    PubMed  CAS  Google Scholar 

  • Garcia-Mata C, Lamattina L (2007) Abscisic acid (ABA) inhibits light-induced stomatal opening through calcium- and nitric oxide-mediated signaling pathways. Nitric Oxide 17:143–151

    PubMed  CAS  Google Scholar 

  • Gifford JL, Walsh MP, Vogel HJ (2007) Structure and metal-ion-binding properties of the Ca2+ binding helix-loop-helix EF-hand motifs. Biochem J 405:199–221

    PubMed  CAS  Google Scholar 

  • Gomez-Cadenas A, Verhey SD, Holappa LD, Shen Q, Ho THD, Walker-Simmons MK (1999) An abscisic acid induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone. Proc Natl Acad Sci USA 96:1767–1772

    PubMed  CAS  Google Scholar 

  • Gorecka KM, Thouverey C, Buchet R, Pikula S (2007a) Potential role of annexin AnnAt1 from Arabidopsis thaliana in pH-mediated cellular response to environmental stimuli. Plant Cell Physiol 48:792–803

    PubMed  CAS  Google Scholar 

  • Gorecka KM, Trebacz K, Górecki R, Pikula S (2007b) Participation of annexin At1 in plant response to abiotic stress. Postepy Biochem (Polish) 53:154–158

    CAS  Google Scholar 

  • Gotoh Y, Nishida E, Yamashita T, Hoshi M, Kawakami M, Sakai H (1990) Microtubule-associated-protein (MAP) kinase activated by nerve growth factor and epidermal growth factor in PC12 cells. Eur J Biochem 193:661–669

    PubMed  CAS  Google Scholar 

  • Grant JJ, Yun BW, Loake GJ (2000) Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant J 24:569–582

    PubMed  CAS  Google Scholar 

  • Group M, Ichimura K, Shinozaki K, Tena G, Sheen J et al (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Google Scholar 

  • Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steens G, Flippen-Anderson JL, Cook JC (1979) Brassinolide, a plant growth promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    CAS  Google Scholar 

  • Guo Y, Halfter U, Ishitani M, Zhu JK (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13:1383–1399

    PubMed  CAS  Google Scholar 

  • Guo F, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    PubMed  CAS  Google Scholar 

  • Gupta AK, Kaur N (2005) Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 30:761–776

    PubMed  CAS  Google Scholar 

  • Haba P, Agüera E, Benitez L, Maldonado JM (2001) Modulation of nitrate reductase activity in cucumber (Cucumis sativus) roots. Plant Sci 161:231–237

    PubMed  Google Scholar 

  • Hacham Y, Holland N, Butterfield C, Ubeda-Tomas S, Bennett MJ, Chory J, Savaldi-Goldstein S (2011) Brassinosteroid perception in the epidermis controls root meristem size. Development 138:839–848

    PubMed  CAS  Google Scholar 

  • Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA 97:3735–3740

    PubMed  CAS  Google Scholar 

  • Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M et al (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11:192–198

    PubMed  CAS  Google Scholar 

  • Hayat S, Ali B, Ahmad A (2007) Salicylic acid: biosynthesis, metabolism and physiological role in plants. In: Hayat S, Ahmad A (eds) Salicylic acid, a plant hormone. Springer, Drodrecht, pp 1–14

    Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    CAS  Google Scholar 

  • He YK, Tang RH, Yi H, Stevens RD, Cook CW, Ahn SM et al (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971

    PubMed  CAS  Google Scholar 

  • Himmelbach A, Yang Y, Grill E (2003) Relay and control of abscisic acid signaling. Curr Opin Plant Biol 6:470–479

    PubMed  CAS  Google Scholar 

  • Hirt H (2000) Results and problems in cell differentiation: MAP kinases in Plant Signal Transduction. Springer, Heidelberg

    Google Scholar 

  • Holley SR, Yalamanchili RD, Moura DS, Ryan CA, Stratmann JW (2003) Convergence of signaling pathways induced by systemin, oligosaccharide elicitors, and ultraviolet-B radiation at the level of mitogen activated protein kinases in Lycopersicon peruvianum suspension cultured cells. Plant Physiol 132:1728–1738

    PubMed  CAS  Google Scholar 

  • Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in  Oryza sativa. Plant J 27:129–138

    PubMed  CAS  Google Scholar 

  • Hoyos ME, Zhang S (2000) Calciumindependent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress. Plant Physiol 122:1355–1363

    PubMed  CAS  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    PubMed  CAS  Google Scholar 

  • Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269:1712–1714

    PubMed  CAS  Google Scholar 

  • Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10:1321–1332

    PubMed  CAS  Google Scholar 

  • Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33:221–233

    PubMed  CAS  Google Scholar 

  • Huang X, Stettmaier K, Michel C, Hutzier P, Mueller MJ, Durner J (2004) Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta 218:938–946

    PubMed  CAS  Google Scholar 

  • Ichimura K, Mizoguchi T, Irie K, Morris P, Giraudat J et al (1998) Isolation of ATMEKK1 (a MAP kinase kinase kinase)-interacting proteins and analysis of a MAP kinase cascade in Arabidopsis. Biochem Biophys Res Commun 253:532–543

    PubMed  CAS  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665

    PubMed  CAS  Google Scholar 

  • Iglesias MJ, Terrile MC, Bartoli CG, D’Ippólito S, Casalongué CA (2010) Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant Mol Biol 74:215–222

    PubMed  CAS  Google Scholar 

  • Iglesias MJ, Terrile MC, Casalongué CA (2011) Auxin and salicylic acid signalings counteract the regulation of adaptive responses to stress. Plant Signal Behav 6(3):452–454

    PubMed  Google Scholar 

  • Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium-binding. Plant Cell 12:1667–1677

    PubMed  CAS  Google Scholar 

  • Janda T, Szalai G, Tari I, Paldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208:175–180

    CAS  Google Scholar 

  • Jang HJ, Pih KT, Kang SG, Lim JH, Jin JB, Piao HL, Hwang I (1998) Molecular cloning of a novel Ca 2+ binding protein that is induced by NaCl stress. Plant Mol Biol 37:839–884

    PubMed  CAS  Google Scholar 

  • Johnson PR, Ecker JR (1998) The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet 32:227–254

    PubMed  CAS  Google Scholar 

  • Jonak C, Heberle-Bors E, Hirt H (1994) MAP kinases: universal multi-purpose signaling tools. Plant Mol Biol 24:407–416

    PubMed  CAS  Google Scholar 

  • Jonak C, Ligterink W, Hirt H (1999) MAP kinases in plant signal transduction. Cell Mol Life Sci 55:204–213

    PubMed  CAS  Google Scholar 

  • Jonak C, Ökrész L, Bögre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5:415–424

    PubMed  CAS  Google Scholar 

  • Joseph B, Jini D, Sujatha S (2010) Insight into the role of exogenous salicylic acid on plants grown under salt environment. Asian J Crop Sci 2:226–235

    Google Scholar 

  • Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5:233–238

    PubMed  Google Scholar 

  • Kang HM, Saltveit ME (2002) Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plant 115:571–576

    PubMed  CAS  Google Scholar 

  • Kang GZ, Wang ZX, Sun GC (2003) Participation of H2O2 in enhancement of cold chilling by salicylic acid in banana seedlings. Acta Bot Sin 45:567–573

    CAS  Google Scholar 

  • Kaur N, Gupta AK (2005) Signal transduction pathways under abiotic stresses in plants. Curr Sci 88:1771–1780

    CAS  Google Scholar 

  • Kauschmann A, Jessop A, Koncz C, Szekeres M, Willmitzer L, Altmann T (1996) Genetic evidence for an essential role of brassinosteroids in plant development. Plant J 9:701–713

    CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert H (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    PubMed  CAS  Google Scholar 

  • Kempa S, Rozhon W, Samaj J, Erban A, Baluska F, Becker T, Haselmayer J, Schleiff E, Kopka J, Hirt H, Jonak C (2007) A plastid-localized glycogen synthase kinase 3 modulates stress tolerance and carbohydrate metabolism. Plant J 49:1076–1090

    PubMed  CAS  Google Scholar 

  • Khan NA, Syeed S, Masood A, Nazar R, Iqbal N (2010) Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. Inter J Plant Biol 1:e1. doi:10.4081/pb.2010.e1

    Google Scholar 

  • Khokhlatchev AV, Canagarajah B, Wilsbacher J, Robinson M, Atkinson M et al (1998) Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93:605–615

    PubMed  CAS  Google Scholar 

  • Khurana JP, Maheswari SC (1978) Induction of flowering in Lemna paucicostata by salicylic acid. Plant Sci Lett 12:127–132

    CAS  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinase. Cell 72:427–441

    PubMed  CAS  Google Scholar 

  • Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR (2000) Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J 23:267–278

    PubMed  CAS  Google Scholar 

  • Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S (2003) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15:411–423

    PubMed  CAS  Google Scholar 

  • Kim BG, Waadt R, Cheong YH, Pandey GK, Dominguez-Solis JR et al (2007) The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J 52:473–484

    PubMed  CAS  Google Scholar 

  • Klimecka M, Muszynska G (2007) Structure and functions of plant calcium dependent protein kinases. Acta Biochim Pol 54:219–233

    PubMed  CAS  Google Scholar 

  • Knight H (2000) Calcium signaling during abiotic stress in plants. Int Rev Cytol Surv Cell Biol 195:269–324

    CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078

    PubMed  CAS  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    PubMed  CAS  Google Scholar 

  • Koda V, Koshi T, Kikuta Y (1992) Potato tuber inducing activities of salicylic acid and related compounds. Plant Growth Regul 11:215–219

    CAS  Google Scholar 

  • Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol 134:43–58

    PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu W, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    PubMed  CAS  Google Scholar 

  • Krantev AP, Szalai G, Janda T (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231

    PubMed  Google Scholar 

  • Kudla J, Xu Q, Harter K, Gruissem W, Luan S (1999) Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci USA 96:4718–4723

    PubMed  CAS  Google Scholar 

  • Kumar D, Klessig DF (2000) Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene and jasmonic acid. Mol Plant Microbe Interact 13:347–351

    PubMed  CAS  Google Scholar 

  • Kumar K, Rao KP, Sharma P, Sinha AK (2008) Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress. Plant Physiol Biochem 46:891–897

    PubMed  CAS  Google Scholar 

  • Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Cuéllar Pérez A, Moses T, Seo M, Kanno Y, Häkkinen ST, Van Montagu MCE, Thevelein JM, Maaheimo H, Oksman-Caldentey KM, Rodriguez PL, Rischer H, Goossens A (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in  Arabidopsis and tobacco. Proc Natl Acad Sci USA. doi:10.1073/pnas.1103010108

  • Lamotte L, Courtois C, Barnavon L, Pugin A, Wendehenne D (2005) Nitric oxide in plants: the biosynthesis and cell signalling properties of a fascinating molecule. Planta 221:1–4

    PubMed  CAS  Google Scholar 

  • Landry J, Huot J (1995) Modulation of actin dynamics during stress and physiological stimulation by a signaling pathway involving p38 MAP kinase and heat-shock protein 27. Biochem Cell Biol 73:703–707

    PubMed  CAS  Google Scholar 

  • Larque SA (1979) Stomatal closure in response to acetyl salicylic acid treatments. Pflanzen Physiol 93:371–375

    Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    PubMed  CAS  Google Scholar 

  • Leung J, Merlot S, Giraudat J (1997) The Arabidopsis  ABSCISIC ACID-INSENSITIVE2  (ABI2) and  ABI1  genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771

    PubMed  CAS  Google Scholar 

  • Lewsey MG, Murphy AM, MacLean D, Dalchau N, Westwood JH, Macaulay K, Bennett MH, Moulin M, Hanke DE, Powell G, Smith AG, Carr JP (2010) Disruption of two defensive signaling pathways by a viral RNA silencing suppressor. Mol Plant Microbe Interact 23:835–845

    PubMed  CAS  Google Scholar 

  • Leyser O (2002) Molecular genetics of auxin signaling. Annu Rev Plant Biol 53:377–398

    PubMed  CAS  Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    PubMed  CAS  Google Scholar 

  • Li J, Nam KH (2002) Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295:1299–1301

    PubMed  CAS  Google Scholar 

  • Li J, Wang XQ, Watson MB, Assmann SM (2000) Regulation of abscisic acid-induced stomatal closure and anion channels by guard cells AAPK kinase. Science 287:300–303

    PubMed  CAS  Google Scholar 

  • Li J, Nam KH, Vafeados D, Chory J (2001a) BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiol 127:14–22

    PubMed  CAS  Google Scholar 

  • Li J, Lease KA, Tax FE, Walker JC (2001b) BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:5916–5921

    PubMed  CAS  Google Scholar 

  • Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    PubMed  CAS  Google Scholar 

  • Li Y, Smith C, Corke F, Zheng L, Merali Z, Ryden P, Derbyshire P, Waldron K, Bevan MW (2007) Signaling from an Altered Cell Wall to the Nucleus Mediates Sugar-Responsive Growth and Development in Arabidopsis thaliana. Plant Cell 19:2500–2515

    PubMed  CAS  Google Scholar 

  • Libourel IG, Bethke PC, De Michele R, Jones RL (2006) Nitric oxide gas stimulates germination of dormant Arabidopsis seeds: use of a flow-through apparatus for delivery of nitric oxide. Planta 223:813–820

    PubMed  CAS  Google Scholar 

  • Ligterink W, Hirt H (2001) Mitogen-activated protein (MAP) kinase pathways in plants: versatile signaling tools. Int Rev Cytol 201:209–275

    PubMed  CAS  Google Scholar 

  • Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Science 280:1943–1945

    PubMed  CAS  Google Scholar 

  • Liu W, Fairbairn DJ, Reid RJ, Schachtman DP (2001) Characterization of two HKT1 homologues from Eucalyptus camaldulensis that display intrinsic osmosensing capability. Plant Physiol 127:283–294

    PubMed  CAS  Google Scholar 

  • Loreti E, de Bellis L, Alpi A, Perata P (2001) Why and how do plant cells sense sugars? Ann Bot 88:803–812

    CAS  Google Scholar 

  • Lu C, Han MH, Guevara-Garcia A, Fedoroff NV (2002) Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Natl Acad Sci USA 99:15812–15817

    PubMed  CAS  Google Scholar 

  • Lukowitz W, Roeder A, Parmenter D, Somerville C (2004) A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116:109–119

    PubMed  CAS  Google Scholar 

  • Ma QH, Tian B, Li YL (2010) Overexpression of a wheat jasmonate-regulated lectin increases pathogen resistance. Biochimie 92:187–193

    PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    PubMed  CAS  Google Scholar 

  • Mahajan S, Sopory SK, Tuteja N (2006a) CBL-CIPK paradigm: role in calcium and stress signalling in plants. Proc Indian Natl Sci Acad 72:63–78

    CAS  Google Scholar 

  • Mahajan S, Sopory SK, Tuteja N (2006b) Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum sativum). FEBS J 273:907–925

    PubMed  CAS  Google Scholar 

  • Mahajan S, Pandey GK, Tuteja N (2008) Calcium- and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophy 471:146–158

    CAS  Google Scholar 

  • Martin ML, Busconi L (2001) A rice membrane-bound calcium-dependent protein kinase is activated in response to low temperature. Plant Physiol 125:1442–1449

    PubMed  CAS  Google Scholar 

  • Matsuoka D, Nanmori T, Sato K, Fukami Y, Kikkawa U, Yasuda T (2002) Activation of AtMEK1, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant J 29:637–647

    PubMed  CAS  Google Scholar 

  • Mayrose M, Bonshtien A, Sessa G (2004) LeMPK3 is a mitogen-activated protein kinase with dual specificity induced during tomato defense and wounding responses. J Biol Chem 279:14819–14827

    PubMed  CAS  Google Scholar 

  • McConn M, Browse J (1996) The critical requirement of linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8:403–406

    PubMed  CAS  Google Scholar 

  • Meszaros T, Helfer A, Hatzimasoura E, Magyar Z, Serazetdinova L et al (2006) The Arabidopsis MAP kinase kinaseMKK1participates in defense responses to the bacterial elicitor flagellin. Plant J 48:485–498

    PubMed  CAS  Google Scholar 

  • Mikolajczyk M, Olubunmi SA, Muszynska G, Klessig DF, Dobrowolska G (2000) Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell 12:165–178

    PubMed  CAS  Google Scholar 

  • Mishina TE, Lamb C, Zeier J et al (2007) Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant Cell Environ 30:39–52

    PubMed  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trend Plant Sci 11:15–19

    CAS  Google Scholar 

  • Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80

    PubMed  CAS  Google Scholar 

  • Modolo LV, Augusto O, Almeida IM, Magalhaes JR, Salgado I et al (2005) Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae. FEBS Lett 579:3814–3820

    PubMed  CAS  Google Scholar 

  • Modolo LV, Augusto O, Almeida IM, Pinto-Maglio CAF, Oliveira HC et al (2006) Decreased arginine and nitrite levels in nitrate reductase-deficient Arabidopsis thaliana plants impair nitric oxide synthesis and the hypersensitive response to Pseudomonas syringae. Plant Sci 171:34–40

    CAS  Google Scholar 

  • Molassiotis A, Tanou G, Diamantidis G (2010) NO says more than ‘YES’ to salt tolerance: salt priming and systemic nitric oxide signaling in plants. Plant Signal Behav 5:209–212

    PubMed  CAS  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk JC, Lee SY, Cho MJ, Lim CO, Yun DJ (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA 100:358–363

    PubMed  CAS  Google Scholar 

  • Mori IC, Murata Y, Yang YZ, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2  +  -permeable channels and stomatal closure. PLoS Biol 4:1749–1762

    CAS  Google Scholar 

  • Mora-Garcia S, Vert G, Yin Y, Cano-Delgado A, Cheong H, nd Chory J (2004) Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev 18:448–460

    PubMed  CAS  Google Scholar 

  • Munnik T, Ligterink W, Meskiene I, Calderini O, Beyerly J et al (1999) Distinct osmosensing protein kinase pathways are involved in signalling moderate and severe hyperosmotic stress. Plant J 20:381–388

    PubMed  CAS  Google Scholar 

  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    PubMed  CAS  Google Scholar 

  • Nakagami H, Kiegerl S, Hirt H (2004) OMTK1, a novel MAPKKK, channels oxidative stress signaling through direct MAPK interaction. J Biol Chem 279:26959–26966

    PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13–16

    PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    CAS  Google Scholar 

  • Neill S, Barros R, Bright JO, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro B, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    PubMed  CAS  Google Scholar 

  • Nishihama R, Ishikawa M, Araki S, Soyano T, Asada T, Machida Y (2001) The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Dev 15:352–363

    PubMed  CAS  Google Scholar 

  • Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann FA, Tax FE (1999) Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol 121:743–752

    PubMed  CAS  Google Scholar 

  • Ohkuma K, Lyon JL, Addicott FT, Smith OE (1963) Abscisin II, an abscission-accelerating substance from young cotton fruit. Science 142:1592–1593

    PubMed  CAS  Google Scholar 

  • Ozturk ZN, Talame V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48:551–573

    CAS  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1241–1248

    PubMed  CAS  Google Scholar 

  • Pandey GK, Reddy MK, Sopory SK, Singla-Pareek S (2002) Calcium homeostasis in plants: role of calcium binding proteins in abiotic stress tolerance. Ind J Biotechnol 1:135–157

    CAS  Google Scholar 

  • Pandey GK, Cheong YH, Kim KN, Grant JJ, Li LG et al (2004) The calcium sensor calcineurin B-like CBL9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16:1912–1924

    PubMed  CAS  Google Scholar 

  • Perrot-Rechenmann C (2010) Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol 2(5):a00144

    Google Scholar 

  • Perruc E, Charpenteau M, Ramirez BC, Jauneau A, Galaud JP, Ranjeva R, Ranty B (2004) A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance inArabidopsis thaliana  seedlings. Plant J 38:410–420

    PubMed  CAS  Google Scholar 

  • Pfeiffer S, Janistyn B, Jessner G, Pichorner H, Eberman RE (1994) Gaseous nitric oxide stimulates guanosine 3′, 5′-cyclic monophosphate formation in spruce needles. Phytochemistry 36:259–262

    CAS  Google Scholar 

  • Plieth C, Hansen UP, Knight H, Knight MR (1999) Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J 18:491–497

    PubMed  CAS  Google Scholar 

  • Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G, Janda T (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231

    PubMed  CAS  Google Scholar 

  • Purcell PC, Smith AM, Halford NG (1998) Antisense expression of a sucrose non-fermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves. Plant J 14:195–202

    CAS  Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441

    PubMed  CAS  Google Scholar 

  • Qiu JL, Zhou L, Yun BW, Nielsen HB, Fiil BK et al (2008) Arabidopsis mitogen-activated protein kinase kinases MKK1and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol 148:212–222

    Google Scholar 

  • Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ et al (2008a) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 27:2214–2221

    PubMed  CAS  Google Scholar 

  • Qiu JL, Zhou L, Yun BW, Nielsen HB, Fiil BK et al (2008b) Arabidopsis mitogen-activated protein kinase kinases MKK1and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol 148:212–222

    PubMed  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod P, Murr DP, Watkins CB (1997) Influence if salicylic acid on H2O2 production, oxidative stress and H2O2-metabolizing enzymes. Plant Physiol 115:137–149

    PubMed  CAS  Google Scholar 

  • Rao KP, Richa T, Kumar K, Raghuram B, Sinha AK (2010) In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res 17:139–153

    PubMed  CAS  Google Scholar 

  • Rao KP, Vani G, Kumar K, Wankhede DP, Mishra M, Gupta M, Sinha AK (2011) Arsenic stress activates MAP kinase in rice roots and leaves. Arch Biochem Biophys 506(1):73–82

    PubMed  CAS  Google Scholar 

  • Reddy ASN (2001) Calcium: silver bullet in signaling. Plant Sci 160:381–404

    PubMed  CAS  Google Scholar 

  • Ren D, Yang H, Zhang S (2002) Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem 277:559–565

    PubMed  CAS  Google Scholar 

  • Rock C (2000) Pathways to abscisic acid-regulated gene expression. New Phytol 148:357–396

    CAS  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    PubMed  CAS  Google Scholar 

  • Rodriguez MCS, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    PubMed  CAS  Google Scholar 

  • Rohde A, Kurup S, Holdsworth M (2000) ABI3  emerges from the seed. Trend Plant Sci 5:418–419

    CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    PubMed  CAS  Google Scholar 

  • Romeis T, Ludwig AA, Martin R, Jones JDG (2001) Calcium-dependent protein kinases play an essential role in a plant defense response. EMBO J 20:5556–5567

    PubMed  CAS  Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE (2009) Soluble sugars, metabolism, sensing and abiotic stress-A complex network in the life of plants. Plant Signal Behav 4:388–393

    PubMed  CAS  Google Scholar 

  • Rossomando EF, Hadjimichael J, Varnum-Finney B, Soll DR (1987) HLAMP – a conjugate of hippuryllysine and AMP which contains a phosphoamide bond-stimulates chemotaxis in Dictyostelium discoideum. Differentiation 35:88–93

    PubMed  CAS  Google Scholar 

  • Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA 98:14150–14155

    PubMed  CAS  Google Scholar 

  • Saijo Y, Kinoshita N, Ishiyama K, Hata S, Kyozuka J, Hayakawa T, Nakamura T, Shimamoto K, Yamaya T, Izui K (2001) A Ca2+ dependent protein kinase that endows rice plants with cold- and salt stress tolerance functions in vascular bundles. Plant Cell Physiol 42:1228–1233

    PubMed  CAS  Google Scholar 

  • Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 95:5812–5817

    PubMed  CAS  Google Scholar 

  • Samuel MA, Ellis BE (2000) Double jeopardy both overexpression and suppression of a redox-activated plant mitogen-activated protein kinase render tobacco plants ozone sensitive. Plant Cell 14:2059–2069

    Google Scholar 

  • Samuel MA, Miles GP, Ellis BE (2000) Ozone treatment rapidly activates MAP kinase signalling in plants. Plant J 22:367–376

    PubMed  CAS  Google Scholar 

  • Sanan-Mishra N, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Arch Biochem Biophys 452:55–68

    Google Scholar 

  • Sarwat M, Tuteja N (2007) Calnexin: a versatile calcium binding integral membrane-bound chaperone of endoplasmic reticulum. Calcium Binding Proteins 2:36–50

    Google Scholar 

  • Schaller GE, Bleecker AB (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270:1809–1811

    PubMed  CAS  Google Scholar 

  • Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    PubMed  CAS  Google Scholar 

  • Schlessinger J (2002) Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110:660–672

    Google Scholar 

  • Scott IM, Clarke SM, Wood JE, Mur LAJ (2004) Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol 135:1040–1049

    PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J et al (2002) Monitoring the expression profiles of 7000 Arabidopsis  genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    PubMed  CAS  Google Scholar 

  • Seo S, Katou S, Seto H, Gomi K, Ohashi Y (2007) The mitogen-activated protein kinases WIPK and SIPK regulate the levels of jasmonic and salicylic acids in wounded tobacco plants. Plant J 49:899–909

    PubMed  CAS  Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902

    PubMed  CAS  Google Scholar 

  • Shi H, Zhu J-K (2002) Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and ABA. Plant Mol Biol 50:543–550

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KFX, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234

    PubMed  CAS  Google Scholar 

  • Singh G, Kaur M (1980) Effect of growth regulators on podding and yield of mung bean (Vigna radiata L.). Ind J Plant Physiol 23:366–370

    Google Scholar 

  • Singh RP, Srivastava HS (1978) Effect of salicylic acid on NADH: glutamate synthase activity in roots and leaf tissues of maize seedlings. Ind J Plant Physiol 30:60–65

    Google Scholar 

  • Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6(2):196–203

    PubMed  Google Scholar 

  • Smeekens S (2000) Sugar induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 52:49–81

    Google Scholar 

  • Smet ID, Voss U, Jurgens G, Beeckman T (2009) Receptor-like kinases shape the plant. Nat Cell Biol 11:1166–1173

    PubMed  Google Scholar 

  • Smith JL, Moraes CMD, Mescher MC (2009) Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag Sci 65:497–503

    PubMed  CAS  Google Scholar 

  • Song WY, Zhang ZB, Shao HB, Guo XL, Cao HX, Zhao HB, Fu ZY, Hu XJ (2008) Relationship between calcium decoding elements and plant abiotic stress resistance. Int J Biol Sci 4:116–125

    PubMed  CAS  Google Scholar 

  • Sokolovski S, Hills A, Gay R, Garcia-Mata C, Lamattina L, Blatt MR (2005) Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells. Plant J 43:520–529

    PubMed  CAS  Google Scholar 

  • Stafstrom JP, Altschuler M, Anderson DH (1993) Molecular cloning and expression of a MAP kinase homologue from pea. Plant Mol Biol 22:83–90

    PubMed  CAS  Google Scholar 

  • Staswick PE, Su W, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA 89:6837–6840

    PubMed  CAS  Google Scholar 

  • Staswick PE, Tiryaki I, Rowe ML (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase super family that show activity on jasmonic salicylic and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405–1415

    PubMed  CAS  Google Scholar 

  • Steggerda SM, Paschal BM (2002) Regulation of nuclear import and export by the GTPase Ran. Int Rev Cytol 217:41–91

    PubMed  CAS  Google Scholar 

  • Stepanova AN, Ecker JR (2000) Ethylene signaling: from mutants to molecules. Curr Opin Plant Biol 3:353–360

    PubMed  CAS  Google Scholar 

  • Stintzi A, Browse J (2000) The Arabidopsis male – sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97:10625–10630

    PubMed  CAS  Google Scholar 

  • Stohr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57:463–470

    PubMed  Google Scholar 

  • Sturgill TW, Ray LB (1986) Muscle proteins related to microtubule associated protein-2 are substrates for an insulin-stimulatable kinase. Biochem Biophys Res Commun 134:565–571

    PubMed  CAS  Google Scholar 

  • Tahtiharju S, Palva T (2001) Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J 26:461–470

    PubMed  CAS  Google Scholar 

  • Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S et al (2007) The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19:805–818

    PubMed  CAS  Google Scholar 

  • Tang D, Christiansen KM, Innes RW (2005) Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiol 138:1018–1026

    PubMed  CAS  Google Scholar 

  • Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321:557–560

    PubMed  CAS  Google Scholar 

  • Tang W, Deng Z, Wang ZY (2010) Proteomics shed light on the brassinosteroid signaling mechanisms. Curr Opin Plant Biol 13:27–33

    PubMed  CAS  Google Scholar 

  • Tasgin E, Atici O, Nalbantoglu B (2003) Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul 41:231–236

    CAS  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K et al (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    PubMed  CAS  Google Scholar 

  • Tena G, Asai T, Chiu WL, Sheen J (2001) Plant mitogen-activated protein kinase signaling cascades. Curr Opin Plant Biol 4:392–400

    PubMed  CAS  Google Scholar 

  • Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133:1367–1375

    PubMed  CAS  Google Scholar 

  • Tuteja N (2007a) Abscisic acid and abiotic stress signalling. Plant Signal Behav 2:135–138

    PubMed  Google Scholar 

  • Tuteja N (2007b) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    PubMed  CAS  Google Scholar 

  • Tuteja N (2009a) Cold, salt and drought stress. In: Hirt H (ed) Plant stress biology: from genomics towards system biology. Wiley, Weinheim, pp 137–159

    Google Scholar 

  • Tuteja N (2009b) Integrated calcium signaling in plants. In: Baluska F, Mancuso S (eds) Signaling in plants. Springer, Heidelberg, pp 29–49

    Google Scholar 

  • Tuteja N, Mahajan S (2007) Further characterization of calcineurin B-like protein and its interacting partner CBL-interacting protein kinase from Pisum sativum. Plant Signal Behav 2:358–361

    PubMed  Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3:525–536

    PubMed  Google Scholar 

  • Tuteja N, Chandra M, Tuteja R, Misra MK (2004) Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J Biomed Biotechnol 2004:227–237

    PubMed  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    CAS  Google Scholar 

  • Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1259

    PubMed  CAS  Google Scholar 

  • Vanderbeld B, Snedden W (2007) Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37, CML38 and CML39. Plant Mol Biol 64:683–697

    PubMed  CAS  Google Scholar 

  • Wang LJ, Li SH (2006) Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci 170:685–694

    CAS  Google Scholar 

  • Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2:505–513

    PubMed  CAS  Google Scholar 

  • Wang W, Hall AE, O’Malley R, Bleecker AB (2003) Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci USA 100:352–357

    PubMed  CAS  Google Scholar 

  • Weinl S, Kudla J (2009) The CBL-CIPK Ca2  +  -decoding network: function and perspectives. New Phytol 184:517–528

    PubMed  CAS  Google Scholar 

  • Witte CP, Keinath N, Dubiella U, Demouliere R, Seal A, Romeis T (2010) Tobacco calcium-dependent protein kinases are differentially phosphorylated in vivo as part of a kinase cascade that regulates stress response. J Biol Chem 285:9740–9748

    PubMed  CAS  Google Scholar 

  • Woeste KE, Kieber JJ (2000) A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell 12:443–455

    PubMed  CAS  Google Scholar 

  • Wurzinger B, Mair A, Pfister B, Teige M (2011) Cross-talk of calcium-dependent protein kinase and MAP kinase signalling. Plant Signal Behav 6:1–5

    Google Scholar 

  • Xiao W, Sheen J, Jang JC (2000) The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol Biol 44:451–461

    PubMed  CAS  Google Scholar 

  • Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression andH2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54:440–451

    PubMed  CAS  Google Scholar 

  • Xiong L, Lee H, Ishitani M, Zhu JK (2002) Regulation of osmotic stress responsive gene expression by LOS6/ABA1 locus in Arabidopsis. J Biol Chem 277:8588–8596

    PubMed  CAS  Google Scholar 

  • Xu YC, Zhao BL (2003) The main origin of endogenous NO in higher non-leguminous plants. Plant Physiol Biochem 41:833–838

    CAS  Google Scholar 

  • Yamasaki H (2000) Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Phil Trans R Soc Lond B Biol Sci 355:1477–1488

    CAS  Google Scholar 

  • Yang KY, Liu Y, Zhang S (2001) Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA 98:741–746

    PubMed  CAS  Google Scholar 

  • Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181–191

    PubMed  CAS  Google Scholar 

  • Yoo SD, Cho YH, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451:789–795

    PubMed  CAS  Google Scholar 

  • Zemojtel T, Frohlich A, Palmieri MC, Kolanczyk M, Mikula I, Wyrwicz LS et al (2006) Plant nitric oxide synthase: a never-ending story? Trend Plant Sci 11:524–525

    CAS  Google Scholar 

  • Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6:520–527

    PubMed  CAS  Google Scholar 

  • Zhang A, Jiang M, Zhang J, Tan M, Hu X (2006) Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol 141:475–487

    PubMed  CAS  Google Scholar 

  • Zhang YY, Wang LL, Liu YL, Zhang Q, Wei QP, Zhang WH (2006b) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224:545–555

    PubMed  CAS  Google Scholar 

  • Zhang F, Wang Y, Yang Y, Wu H, Di W, Liu J (2007) Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ 30:775–785

    PubMed  Google Scholar 

  • Zhao XC, Qu X, Mathews DE, Schaller GE (2002) Effect of ethylene pathway mutations upon expression of the ethylene receptor ETR1 from Arabidopsis. Plant Physiol 130:1983–1991

    PubMed  CAS  Google Scholar 

  • Zhao MG, Zhao X, Wu YX, Zhang LX (2007a) Enhanced sensitivity to oxidative stress in Arabidopsis nitric oxide synthesis mutant. J Plant Physiol 164:737–745

    PubMed  CAS  Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007b) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    PubMed  CAS  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    PubMed  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    PubMed  CAS  Google Scholar 

  • Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036

    PubMed  CAS  Google Scholar 

  • Zottini M, Costa A, De Michele R, Ruzzene M, Carimi F, Lo Schiavo F (2007) Salicylic acid activates nitric oxide synthesis in Arabidopsis. J Exp Bot 58:1397–1405

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Department of Biotechnology (DBT), and the Department of Science and Technology (DST), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaiz Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ahmad, P., Bhardwaj, R., Tuteja, N. (2012). Plant Signaling Under Abiotic Stress Environment. In: Ahmad, P., Prasad, M. (eds) Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0815-4_14

Download citation

Publish with us

Policies and ethics