Skip to main content

Low-Power DRAM

  • Chapter
  • First Online:
Green Computing with Emerging Memory

Abstract

Dynamic random access memory (DRAM) is a volatile random access memory and the memory cell consists of a cell transistor and a capacitor [1–3], as shown in Fig. 5.1. The cell transistor is used to connect a storage node (N) and a data-line (DL) by activating a word-line (WL), while the capacitor, connected between N and the plate (PL), stores information. The signal charge stored in the capacitor is reduced by the leakage currents of the memory cell, and this reduction causes data loss. To avoid this, a refresh operation that will be explained later is periodically required and the refresh interval is determined by storage node capacitance (C S). The signal voltage developing on the floating DL after WL is activated is also determined by C S. Therefore, higher capacitance (>20 fF) is crucial to achieving low standby power and stable sensing operation [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Itoh K (2001) VLSI memory chip design. Springer, Heidelberg

    MATH  Google Scholar 

  2. Itoh K, Horiguchi M, Tanaka H (2007) Ultra-low voltage nano-scale memories. Springer, Heidelberg

    Google Scholar 

  3. Keeth B, Baker RJ, Johnson B, Lin F (2008) DRAM circuit design: fundamental and high-speed topics, 2nd edn. Wiley-IEEE, San Francisco

    Google Scholar 

  4. Kim K (2010) From the future Si technology perspective: challenges and opportunities. IEDM Dig, Dec 2010, pp 1–9

    Google Scholar 

  5. Kim WD, Kim JW, Won SJ, Nam SD, Nam BY, Yoo CY, Park YW, Lee SI, Lee MY (2000) Development of CVD-Ru/Ta2O5/CVD-TiN capacitor for multigigabit-scale DRAM generation. Symposium on VLSI technology digest of technical papers, pp 100–101

    Google Scholar 

  6. Kim HS, Kim DH, Park JM, Hwang YS, Huh M, Hwang HK, Kang NJ, Lee BH, Cho MH, Kim SE, Kim JY, Park BJ, Lee JW, Kim DI, Jeong MY, Kim HJ, Park YJ, Kim K (2003) An outstanding and highly manufacturable 80 nm DRAM technology. IEDM Dig, Dec 2003, pp 17.2.1–17.2.4

    Google Scholar 

  7. Kil D-S, Song H-S, Lee K-J, Hong K, Kim J-H, Park K-S, Yeom S-J, Roh J-S, Kwak N-J, Sohn H-C, Kim J-W, Park S-W (2006) Development of new TiN/ZrO2/Al2O3/ZrO2/TiN capacitors extendable to 45 nm generation DRAMs replacing HfO2 based dielectrics. Symposium on VLSI technology digests of technical papers, Jun 2006, pp 38–39

    Google Scholar 

  8. Kim K, Jeong G (2007) Memory technologies for sub-40 nm node. IEDM Dig, Dec 2007, pp 27–30

    Google Scholar 

  9. Kim JY, Lee CS, Kim SE, Chung IB, Choi YM, Park BJ, Lee JW, Kim DI, Hwang YS, Hwang DS, Hwang HK, Park JM, Kim DH, Kang NJ, Cho MH, Jeong MY, Kim HJ, Han JN, Kim SY, Nam BY, Park HS, Chung SH, Lee JH, Park JS, Kim HS, Park YJ, Kim K (2003) The breakthrough in data retention time of DRAM using recess-channel-array transistor (RCAT) for 88 nm feature size and beyond. Symposium on VLSI technology digests of technical papers, Jun 2003, pp 11–12

    Google Scholar 

  10. Hofmann F, Rösner W (2001) Surrounding gate select transistor for 4F2 stacked Gbit DRAM. ESSDERC Dig, Sep 2001, pp 131–134

    Google Scholar 

  11. Yoon J-M, Lee K, Park S-B, Kim S-G, Seo H-W, Son Y-W, Kim B-S, Chung H-W, Lee C-H, Lee W-S, Kim D-C, Park D, Lee W, Ryu B-I (2006) A novel low leakage current VPT (vertical pillar transistor) integration for 4F2 DRAM cell array with sub 40 nm technology. DRC Tech Dig, Jun 2006, pp 259–260

    Google Scholar 

  12. Song K-W, Kim J-Y, Yoon J-M, Kim S, Kim H, Chung H-W, Kim H, Kim K, Park H-W, Kang HC, Tak N-K, Park D, Kim W-S, Lee Y-T, Oh YC, Jin G-Y, Yoo J, Park D, Oh K, Kim C, Jun Y-H (2010) A 31 ns random cycle VCAT-based 4F2 DRAM with manufacturability and enhanced cell efficiency. IEEE J Solid State Circuits 45(4):880–888

    Article  Google Scholar 

  13. Chung H, Kim H, Kim H, Kim K, Kim S, Song K-W, Kim J, Oh YC, Hwang Y, Hong H, Jin G-Y, Chung C (2011) Novel 4F2 DRAM cell with vertical pillar transistor (VPT). ESSDERC Dig, Sep 2011, pp 211–214

    Google Scholar 

  14. Sekiguchi T, Itoh K, Takahashi T, Sugaya M, Fujisawa H, Nakamura M, Kajigaya K, Kimura K (2002) A low-impedance open-bitline array for multigigabit DRAM. IEEE J Solid State Circuits 37(4):487–498 Apr 2002

    Article  Google Scholar 

  15. Lee MJ (2011) A sensing noise compensation bit line sense amplifier for low voltage applications. IEEE J Solid State Circuits 46(3):690–694 Mar 2011

    Article  Google Scholar 

  16. Yanagawa Y, Sekiguchi T, Kotabe A, Ono K, Takemura R (2011) In-substrate-bitline sense amplifier with array-noise-gating scheme for low-noise 4F2 DRAM array operable at 10-fF cell capacitance. Symposium on VLSI circuits digest of technical papers, Jun 2011, pp 230–231

    Google Scholar 

  17. Moon Y, Cho YH, Lee HB, Jeong BH, Hyun SH, Kim BC, Jeong IC, Seo SY, Shin JH, Choi SW, Song HS, Choi JH, Kyung KH, Jun YH, Kim K (2009) 1.2 V 1.6 Gb/s 56 nm 6F2 4 Gb DDR3 SDRAM with hybrid-I/O sense amplifier and segmented sub-array architecture. ISSCC digest of technical papers, Feb 2009, pp 128–129

    Google Scholar 

  18. Jeong BH, Lee J, Lee YJ, Kang TJ, Lee JH, Hong DH, Kim JH, Lee ER, Kim MC, Lee JH, Park SI, Son JH, Lee SK, Yoo SN, Kim SM, Kwon TW, Ahn JH, Kim YT (2009) A 1.35 V 4.3 GB/s 1 Gb LPDDR2 DRAM with controllable repeater and on-the-fly power-cut scheme for low-power and high-speed mobile application. ISSCC digest of technical papers, Feb 2009, pp 132–133

    Google Scholar 

  19. Sekiguchi T, Ono K, Kotabe A, Yanagawa Y (2011) 1-Tbyte/s 1-Gbit DRAM architecture using 3-D interconnect for high-throughput computing. IEEE J Solid State Circuits 46(4):828–837 Apr 2011

    Article  Google Scholar 

  20. Fishburn F, Busch B, Dale J, Hwang D, Lane R, McDaniel T, Southwick S, Turi R, Wang H, Tran L (2004) A 78 nm 6F2 DRAM technology for multigigabit densities. Symposium on VLSI technology digests of technical papers, Jun 2004, pp 28–29

    Google Scholar 

  21. Cho C, Song S, Kim S, Jang S, Lee S, Kim H, Sung Y, Jeon S, Yeo G, Kim Y, Kim Y, Jin G, Kim K (2005) A 6F2 DRAM technology in 60 nm era for gigabit densities. Symposium on VLSI technology digests of technical papers, Jun 2005, pp 36–37

    Google Scholar 

  22. Akiyama S, Sekiguchi T, Takemura R, Kotabe A, Itoh K (2009) Low-Vt small-offset gated preamplifier for sub-IV gigabit DRAM arrays. In: IEEE international solid-state circuits conference of digest of technical papers, Feb 2009, pp 142–143

    Google Scholar 

  23. Kawahara T, Kawajiri Y, Kitsukawa G, Nakagome Y, Sagara K, Kawamoto Y, Akiba T, Kato S, Kawase Y, Itoh K (1991) A circuit technology for sub-10-ns ECL 4-Mb BiCMOS DRAM’s. IEEE J Solid State Circuits 26(11):1530–1537 Nov 1991

    Article  Google Scholar 

  24. Nakamura M, Takahashi T, Akiba T, Kitsukawa G, Morino M, Sekiguchi T, Asano I, Komatsuzaki K, Tadaki Y, Songsu C, Kajigaya K, Tachibana T, Sato K (1996) A 29-ns 64-Mb DRAM with hierarchical array architecture. IEEE J Solid State Circuits 31(9):1302–1307 Sep 1996

    Article  Google Scholar 

  25. Takahashi T, Sekiguchi T, Takemura R, Narui S, Fujisawa H, Miyatake S, Morino M, Arai K, Yamada S, Shukuri S, Nakamura M, Tadaki Y, Kajigaya K, Kimura K, Itoh K (1996) A multigigabit DRAM technology with 6F2 open-bitline cell, distributed overdriven sensing, and stacked-flash fuse. IEEE J Solid State Circuits 31(9):1302–1307 Sep 1996

    Article  Google Scholar 

  26. Takemura R, Sekiguchi T, Fujisawa H, Takahashi T, Sakata T, Nakamura M (2001) An independent-source overdriven sense amplifier for multi-gigabit DRAM array. SSDM Dig, Sep 2001, pp 102–103

    Google Scholar 

  27. Kotabe A, Yanagawa Y, Akiyama S, Sekiguchi T (2010) 0.5-V low-V T CMOS preamplifier for low-power and high-speed gigabit-DRAM arrays. IEEE J Solid State Circuits 45(11):2348–2355 Nov 2010

    Google Scholar 

  28. Hidaka H, Arimoto K, Hirayama K, Hayashikoshi M, Asakura M, Tsukude M, Oishi T, Kawai S, Suma K, Konishi Y, Tanaka K, Wakamiya W, Ohno Y, Fujishima K (1992) A 34-ns 16-Mb DRAM with controllable voltage down-converter. IEEE J Solid State Circuits 27(7):1020–1027 Jul 1992

    Article  Google Scholar 

  29. Yamada T, Nakata Y, Hasegawa J, Amano N, Shibayama A, Sasago M, Matsuo N, Yabu T, Matsumoto S, Okada S, Inoue M (1991) A 64-Mb DRAM with meshed power line. IEEE J Solid State Circuits 26(11):1506–1510 Nov 1991

    Article  Google Scholar 

  30. ELPIDA technical note on low power function of Mobile RAMTM auto temperature compensated self refresh (ATCSR)

    Google Scholar 

  31. Kim C-K, Kong B-S, Lee C-G, Jun Y-H (2008) CMOS temperature sensor with ring oscillator for mobile DRAM self-refresh control. ISCAS Dig, May 2008, pp 3094–3097

    Google Scholar 

  32. Idei Y, Shimohigashi K, Aoki M, Noda H, Iwai H, Sato K, Tachibana T (1998) Dual-period self-refresh scheme for low-power DRAM’s with on-chip PROM mode register. IEEE J Solid State Circuits 33(12):253–259 Feb 1998

    Article  Google Scholar 

  33. Ahn J-H, Jeong B-H, Kim S-H, Chu S-H, Cho S-K, Lee H-J, Kim M-H, Park S-I, Shin S-W, Lee J-H, Han B-S, Hong J-K, Moran PB, Kim Y-T (2006) Adaptive self refresh scheme for battery operated high-density Mobile DRAM applications. ASSCC Dig, Nov 2006, pp 319–322

    Google Scholar 

  34. Horiguchi M, Itoh K (2011) Nanoscale memory repair. Springer, New York Jan 2011

    Book  Google Scholar 

  35. Kim S-H, Lee W-O, Kim J-H, Lee S-S, Hwang S-Y, Kim C-I, Kwon T-W, Han B-S, Cho S-K, Kim D-H, Hong J-K, Lee M-Y, Yin S-W, Kim H-G, Ahn J-H, Kim Y-T, Koh Y-H, Kih J-S (2007) A low power and highly reliable 400 Mbps mobile DDR SDRAM with on-chip distributed ECC. ASSCC Dig, Nov 2007, pp 34–37

    Google Scholar 

  36. ELPIDA technical note on low power function of Mobile RAMTM partial array self refresh (PASR)

    Google Scholar 

  37. ELPIDA technical note on low power function of Mobile RAMTM deep power down (DPD)

    Google Scholar 

  38. Takeshima T, Takada M, Koike H, Watanabe H, Koshimaru S, Mitake K, Kikuchi W, Tanigawa T, Murotani T, Noda K, Tasaka K, Yamanaka K, Koyama K (1990) A 55-ns 16-Mb DRAM with built-in self-test function using microprogram ROM. IEEE J Solid State Circuits 25(4):903–911 Aug 1990

    Article  Google Scholar 

  39. Asakura M, Ooishi T, Tsukude M, Tomishima S, Eimori T, Hidaka H, Ohno Y, Arimoto K, Fujishima K, Nishimura T, Yoshihara T (1994) An experimental 256-Mb DRAM with boosted sense-ground scheme. IEEE J Solid State Circuits 29(11):1303–1309 Nov 1994

    Article  Google Scholar 

  40. Inoue M, Yamada T, Kotani H, Yamauchi H, Fujiwara A, Matsushima J, Akamatsu H, Fukumoto M, Kubota M, Nakao I, Aoi N, Fuse G, Ogawa S, Odanaka S, Ueno A, Yamamoto H (1988) A 16-Mbit DRAM with a relaxed sense-amplifier-pitch open-bit-line architecture. IEEE J Solid State Circuits 23(5):1104–1112 Oct 1988

    Article  Google Scholar 

  41. Barth J, Plass D, Nelson E, Hwang C, Fredeman G, Sperling M, Mathews A, Reohr W, Nair K, Cao N (2010) A 45 nm SOI embedded DRAM macro for POWER7TM 32 MB on-chip L3 cache. ISSCC Dig, Feb 2010, pp 342–343

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kotabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kotabe, A. (2013). Low-Power DRAM. In: Kawahara, T., Mizuno, H. (eds) Green Computing with Emerging Memory. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0812-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0812-3_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0811-6

  • Online ISBN: 978-1-4614-0812-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics