Skip to main content

Abstract

It is well accepted that the process-induced variability has huge impacts on the circuit performance in the sub-100 nm VLSI technologies [121, 120]. The variational consideration of process has to be assessed in various VLSI design steps to ensure robust circuit design. Process variations consist of both systematic ones, which depend on patterns and other process parameters, and random ones, which have to be dealt with using stochastic approaches. Efficient capacitance extraction approaches by using the boundary element method (BEM) such as the fastCap[115], HiCap [164], and PHiCap [199] have been proposed in the past. To consider the variation impacts on the interconnects, one has to consider the RLC extraction processes of the three-dimensional structures modeling the interconnect conductors. In this chapter, we investigate the geometry variational impacts on the extracted capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the scale factor 1 ∕ (4πε0) can be ignored here to simplify the notation and is used in the implementation to give results in units of farads.

References

  1. J. Cui, G. Chen, R. Shen, S. X.-D. Tan, W. Yu, and J. Tong, “Variational capacitance modeling using orthogonal polynomial method,” in Proc. IEEE/ACM International Great Lakes Symposium on VLSI, 2008, pp. 23–28.

    Google Scholar 

  2. J. Fan, N. Mi, S. X.-D. Tan, Y. Cai, and X. Hong, “Statistical model order reduction for interconnect circuits considering spatial correlations,” in Proc. Design, Automation and Test In Europe. (DATE), 2007, pp. 1508–1513.

    Google Scholar 

  3. R. Jiang, W. Fu, J. M. Wang, V. Lin, and C. C.-P. Chen, “Efficient statistical capacitance variability modeling with orthogonal principle factor analysis,” in Proc. Int. Conf. on Computer Aided Design (ICCAD), 2005, pp. 683–690.

    Google Scholar 

  4. A. Klimke, “Sparse Grid Interpolation Toolbox—user’s guide,” University of Stuttgart, Tech. Rep. IANS report 2006/001, 2006.

    Google Scholar 

  5. A. Klimke and B. Wohlmuth, “Algorithm 847: spinterp: Piecewise multilinear hierarchical sparse grid interpolation in MATLAB,” ACM Transactions on Mathematical Software, vol. 31, no. 4, 2005.

    Google Scholar 

  6. A. Labun, “Rapid method to account for process variation in full-chip capacitance extraction,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, pp. 941–951, June 2004.

    Article  Google Scholar 

  7. N. Mi, J. Fan, S. X.-D. Tan, Y. Cai, and X. Hong, “Statistical analysis of on-chip power delivery networks considering lognormal leakage current variations with spatial correlations,” IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, vol. 55, no. 7, pp. 2064–2075, Aug 2008.

    Article  MathSciNet  Google Scholar 

  8. N. Mi, S. X.-D. Tan, Y. Cai, and X. Hong, “Fast variational analysis of on-chip power grids by stochastic extended krylov subspace method,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 11, pp. 1996–2006, 2008.

    Article  Google Scholar 

  9. N. Mi, S. X.-D. Tan, P. Liu, J. Cui, Y. Cai, and X. Hong, “Stochastic extended Krylov subspace method for variational analysis of on-chip power grid networks,” in Proc. Int. Conf. on Computer Aided Design (ICCAD), 2007, pp. 48–53.

    Google Scholar 

  10. K. Nabors and J. White, “Fastcap: A multipole accelerated 3-d capacitance extraction program,” IEEE TCAD, pp. 1447–1459, Nov 1991.

    Google Scholar 

  11. K. Narbos and J. White, “FastCap: a multipole accelerated 3D capacitance extraction program,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 10, no. 11, pp. 1447–1459, 1991.

    Article  Google Scholar 

  12. S. Nassif, “Delay variability: sources, impact and trends,” in Proc. IEEE Int. Solid-State Circuits Conf., San Francisco, CA, Feb 2000, pp. 368–369.

    Google Scholar 

  13. S. Nassif, “Design for variability in DSM technologies,” in Proc. Int. Symposium. on Quality Electronic Design (ISQED), San Jose, CA, Mar 2000, pp. 451–454.

    Google Scholar 

  14. C. C. Paige and M. A. Saunders, “Solution of sparse indefinite systems of linear equations,” SIAM J. on Numerical Analysis, vol. 12, no. 4, pp. 617–629, September 1975.

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Saad and M. H. Schultz, “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. on Sci and Sta. Comp., pp. 856–869, 1986.

    Google Scholar 

  16. R. Shen, S. X.-D. Tan, J. Cui, W. Yu, Y. Cai, and G. Chen, “Variational capacitance extraction and modeling based on orthogonal polynomial method,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 11, pp. 1556–1565, 2010.

    Google Scholar 

  17. W. Shi, J. Liu, N. Kakani, and T. Yu, “A fast hierarchical algorithm for 3-d capacitance extraction,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 3, pp. 330–336, March 2002.

    Article  Google Scholar 

  18. S. Vrudhula, J. M. Wang, and P. Ghanta, “Hermite polynomial based interconnect analysis in the presence of process variations,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 10, 2006.

    Google Scholar 

  19. D. Wilton, S. Rao, A. Glisson, D. Schaubert, O. Al-Bundak, and C. Butler, “Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains,” IEEE Trans. on Antennas and Propagation, vol. AP-32, no. 3, pp. 276–281, March 1984.

    Article  Google Scholar 

  20. S. Yan, V. Sarim, and W. Shi, “Sparse transformation and preconditioners for 3-d capacitance extraction,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 9, pp. 1420–1426, 2005.

    Article  Google Scholar 

  21. W. Zhang, W. Yu, Z. Wang, Z. Yu, R. Jiang, and J. Xiong, “An efficient method for chip-level statistical capacitance extraction considering process variations with spatial correlation,” in Proc. Design, Automation and Test In Europe. (DATE), Mar 2008, pp. 580–585.

    Google Scholar 

  22. Y. Zhou, Z. Li, Y. Tian, W. Shi, and F. Liu, “A new methodology for interconnect parasitics extraction considering photo-lithography effects,” in Proc. Asia South Pacific Design Automation Conf. (ASPDAC), Jan 2007, pp. 450–455.

    Google Scholar 

  23. H. Zhu, X. Zeng, W. Cai, J. Xue, and D. Zhou, “A sparse grid based spectral stochastic collocation method for variations-aware capacitance extraction of interconnects under nanometer process technology,” in Proc. Design, Automation and Test In Europe. (DATE), Mar 2007, pp. 1514–1519.

    Google Scholar 

  24. Z. Zhu and J. White, “FastSies: a fast stochastic integral equation solver for modeling the rough surface effect,” in Proc. Int. Conf. on Computer Aided Design (ICCAD), 2005, pp. 675–682.

    Google Scholar 

  25. Z. Zhu, J. White, and A. Demir, “A stochastic integral equation method for modeling the rough surface effect on interconnect capacitance,” in Proc. Int. Conf. on Computer Aided Design (ICCAD), 2004, pp. 887–891.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shen, R., Tan, S.XD., Yu, H. (2012). Statistical Capacitance Modeling and Extraction. In: Statistical Performance Analysis and Modeling Techniques for Nanometer VLSI Designs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0788-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0788-1_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0787-4

  • Online ISBN: 978-1-4614-0788-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics