Skip to main content

Scaffolds and Biologic Additives for ACL Surgery

  • Chapter
  • First Online:
The ACL Handbook

Abstract

Most ligaments in our bodies have excellent healing capabilities, but the ACL is an exception. If the poor healing capability of ACL is due to its local environment, appropriate modifications to the local environment may allow ACL to heal better. Various tissue engineering approaches have been studied to help treat ACL injuries. Autografts and allografts have been the most successful; they are the current gold standard of treatment. Synthetic materials have been used in the past with unsatisfactory outcomes, but recent advances in the understanding of biology and biomechanics may lead to an effective graft in the future. The use of biomaterials and xenografts is also under investigation. Cell seeding is also an attractive approach because active cells that participate in healing can be delivered to the surgical site. Various studies have helped us uncover the role of growth factors in ligament healing; platelet-rich plasma (PRP) is one way to deliver growth factors, and the combination of PRP with collagen scaffolds has yielded exciting results in animal studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Janssen RP, van der Wijk J, Fiedler A, Schmidt T, Sala HA, Scheffler SU. Remodelling of human hamstring autografts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2011;19(8):1299–306.

    Article  PubMed  Google Scholar 

  2. Rougraff B, Shelbourne KD, Gerth PK, Warner J. Arthroscopic and histologic analysis of human patellar tendon autografts used for anterior cruciate ligament reconstruction. Am J Sports Med. 1993;21(2):277–84.

    Article  PubMed  CAS  Google Scholar 

  3. Shino K, Inoue M, Horibe S, Nagano J, Ono K. Maturation of allograft tendons transplanted into the knee. An arthroscopic and histological study. J Bone Joint Surg Br. 1988; 70(4):556–60.

    PubMed  CAS  Google Scholar 

  4. Buck BE, Malinin TI, Brown MD. Bone transplantation and human immunodeficiency virus. An estimate of risk of acquired immunodeficiency syndrome (AIDS). Clin Orthop Relat Res. 1989;(240):129–36.

    Google Scholar 

  5. Nin JR, Leyes M, Schweitzer D. Anterior cruciate ligament reconstruction with fresh-frozen patellar tendon allografts: sixty cases with 2 years’ minimum follow-up. Knee Surg Sports Traumatol Arthrosc. 1996;4(3):137–42.

    Article  PubMed  CAS  Google Scholar 

  6. Krych AJ, Jackson JD, Hoskin TL, Dahm DL. A meta-analysis of patellar tendon autograft versus patellar tendon allograft in anterior cruciate ligament reconstruction. Arthroscopy. 2008;24(3):292–8.

    Article  PubMed  Google Scholar 

  7. Ahlfeld SK, Larson RL, Collins HR. Anterior cruciate reconstruction in the chronically unstable knee using an expanded polytetrafluoroethylene (PTFE) prosthetic ligament. Am J Sports Med. 1987;15(4):326–30.

    Article  PubMed  CAS  Google Scholar 

  8. Richmond JC, Manseau CJ, Patz R, McConville O. Anterior cruciate reconstruction using a Dacron ligament prosthesis. A long-term study. Am J Sports Med. 1992;20(1):24–8.

    Article  PubMed  CAS  Google Scholar 

  9. Rading J, Peterson L. Clinical experience with the Leeds-Keio artificial ligament in anterior cruciate ligament reconstruction. A prospective two-year follow-up study. Am J Sports Med. 1995;23(3):316–9.

    Article  PubMed  CAS  Google Scholar 

  10. Mody BS, Howard L, Harding ML, Parmar HV, Learmonth DJ. The ABC carbon and polyester prosthetic ligament for ACL-deficient knees. Early results in 31 cases. J Bone Joint Surg Br. 1993;75(5):818–21.

    PubMed  CAS  Google Scholar 

  11. Kumar K, Maffulli N. The ligament augmentation device: an historical perspective. Arthroscopy. 1999;15(4):422–32.

    Article  PubMed  CAS  Google Scholar 

  12. Thuresson P, Sandberg R, Johansson O, Balkfors B, Westlin N. Anterior cruciate ligament reconstruction with the patellar tendon – augmentation or not? A 2-year follow-up of 82 patients. Scand J Med Sci Sports. 1996;6(4):247–54.

    Article  PubMed  CAS  Google Scholar 

  13. Lu HH, Cooper Jr JA, Manuel S, et al. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials. 2005;26(23):4805–16.

    Article  PubMed  CAS  Google Scholar 

  14. Liljensten E, Gisselfalt K, Edberg B, et al. Studies of polyurethane urea bands for ACL reconstruction. J Mater Sci Mater Med. 2002;13(4):351–9.

    Article  PubMed  CAS  Google Scholar 

  15. Dunn MG, Liesch JB, Tiku ML, Zawadsky JP. Development of fibroblast-seeded ligament analogs for ACL reconstruction. J Biomed Mater Res. 1995;29(11):1363–71.

    Article  PubMed  CAS  Google Scholar 

  16. Fleming BC, Magarian EM, Harrison SL, Paller DJ, Murray MM. Collagen scaffold supplementation does not improve the functional properties of the repaired anterior cruciate ligament. J Orthop Res. 2010;28(6):703–9.

    PubMed  CAS  Google Scholar 

  17. Good L, Odensten M, Pettersson L, Gillquist J. Failure of a bovine xenograft for reconstruction of the anterior cruciate ligament. Acta Orthop Scand. 1989;60(1):8–12.

    Article  PubMed  CAS  Google Scholar 

  18. Yoshida R, Vavken P, Murray MM. Decellularization of bovine anterior cruciate ligament tissues minimizes immunogenic reactions to alpha-gal epitopes by human peripheral blood mononuclear cells. Knee. 2012;19(5):672–5.

    Article  PubMed  Google Scholar 

  19. Huang D, Chang TR, Aggarwal A, Lee RC, Ehrlich HP. Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann Biomed Eng. 1993;21(3):289–305.

    Article  PubMed  CAS  Google Scholar 

  20. Bellincampi LD, Closkey RF, Prasad R, Zawadsky JP, Dunn MG. Viability of fibroblast-seeded ligament analogs after autogenous implantation. J Orthop Res. 1998;16(4):414–20.

    Article  PubMed  CAS  Google Scholar 

  21. Van Eijk F, Saris DB, Riesle J, et al. Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source. Tissue Eng. 2004;10(5–6):893–903.

    Article  PubMed  Google Scholar 

  22. Altman GH, Horan RL, Martin I, et al. Cell differentiation by mechanical stress. FASEB J. 2002;16(2):270–2.

    PubMed  CAS  Google Scholar 

  23. Fan H, Liu H, Wong EJ, Toh SL, Goh JC. In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials. 2008;29(23):3324–37.

    Article  PubMed  CAS  Google Scholar 

  24. Fan H, Liu H, Toh SL, Goh JC. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials. 2009;30(28):4967–77.

    Article  PubMed  CAS  Google Scholar 

  25. Soon MY, Hassan A, Hui JH, Goh JC, Lee EH. An analysis of soft tissue allograft anterior cruciate ligament reconstruction in a rabbit model: a short-term study of the use of mesenchymal stem cells to enhance tendon osteointegration. Am J Sports Med. 2007;35(6):962–71.

    Article  PubMed  Google Scholar 

  26. Deie M, Marui T, Allen CR, et al. The effects of age on rabbit MCL fibroblast matrix synthesis in response to TGF-beta 1 or EGF. Mech Ageing Dev. 1997;97(2):121–30.

    Article  PubMed  CAS  Google Scholar 

  27. DesRosiers EA, Yahia L, Rivard CH. Proliferative and matrix synthesis response of canine anterior cruciate ligament fibroblasts submitted to combined growth factors. J Orthop Res. 1996;14(2):200–8.

    Article  PubMed  CAS  Google Scholar 

  28. Schmidt CC, Georgescu HI, Kwoh CK, et al. Effect of growth factors on the proliferation of fibroblasts from the medial collateral and anterior cruciate ligaments. J Orthop Res. 1995; 13(2):184–90.

    Article  PubMed  CAS  Google Scholar 

  29. Murray MM, Rice K, Wright RJ, Spector M. The effect of selected growth factors on human anterior cruciate ligament cell interactions with a three-dimensional collagen-GAG scaffold. J Orthop Res. 2003;21(2):238–44.

    Article  Google Scholar 

  30. Kobayashi D, Kurosaka M, Yoshiya S, Mizuno K. Effect of basic fibroblast growth factor on the healing of defects in the canine anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 1997;5(3):189–94.

    Article  PubMed  CAS  Google Scholar 

  31. Spindler KP, Dawson JM, Stahlman GC, Davidson JM, Nanney LB. Collagen expression and biomechanical response to human recombinant transforming growth factor beta (rhTGF-beta2) in the healing rabbit MCL. J Orthop Res. 2002;20(2):318–24.

    Article  PubMed  CAS  Google Scholar 

  32. Letson AK, Dahners LE. The effect of combinations of growth factors on ligament healing. Clin Orthop Relat Res. 1994;308:207–12.

    PubMed  Google Scholar 

  33. Nin JR, Gasque GM, Azcarate AV, Beola JD, Gonzalez MH. Has platelet-rich plasma any role in anterior cruciate ligament allograft healing? Arthroscopy. 2009;25(11):1206–13.

    Article  PubMed  Google Scholar 

  34. Vogrin M, Rupreht M, Dinevski D, et al. Effects of a platelet gel on early graft revascularization after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind, clinical trial. Eur Surg Res. 2010;45(2):77–85.

    Article  PubMed  CAS  Google Scholar 

  35. Orrego M, Larrain C, Rosales J, et al. Effects of platelet concentrate and a bone plug on the healing of hamstring tendons in a bone tunnel. Arthroscopy. 2008;24(12):1373–80.

    Article  PubMed  Google Scholar 

  36. Silva A, Sampaio R. Anatomic ACL reconstruction: does the platelet-rich plasma accelerate tendon healing? Knee Surg Sports Traumatol Arthrosc. 2009;17(6):676–82.

    Article  PubMed  Google Scholar 

  37. Vavken P, Sadoghi P, Murray MM. The effect of platelet concentrates on graft maturation and graft-bone interface healing in anterior cruciate ligament reconstruction in human patients: a systematic review of controlled trials. Arthroscopy. 2011;27(11):1573–83.

    Article  PubMed  Google Scholar 

  38. Fleming BC, Spindler KP, Palmer MP, Magarian EM, Murray MM. Collagen-platelet composites improve the biomechanical properties of healing anterior cruciate ligament grafts in a porcine model. Am J Sports Med. 2009;37(8):1554–63.

    Article  PubMed  Google Scholar 

  39. Murray MM, Spindler KP, Abreu E, et al. Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J Orthop Res. 2007;25(1):81–91.

    Article  PubMed  Google Scholar 

  40. Murray MM, Spindler KP, Ballard P, Welch TP, Zurakowski D, Nanney LB. Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold. J Orthop Res. 2007;25(8):1007–17.

    Article  PubMed  CAS  Google Scholar 

  41. Vavken P, Fleming BC, Mastrangelo AN, Machan JT, Murray MM. Biomechanical outcomes after bioenhanced anterior cruciate ligament repair and anterior cruciate ligament reconstruction are equal in a porcine model. Arthroscopy. 2012;28(5):672–80.

    Article  PubMed  Google Scholar 

  42. Murray MM, Palmer M, Abreu E, Spindler KP, Zurakowski D, Fleming BC. Platelet-rich plasma alone is not sufficient to enhance suture repair of the ACL in skeletally immature animals: an in vivo study. J Orthop Res. 2009;27(5):639–45.

    Article  PubMed  Google Scholar 

  43. Fufa D, Shealy B, Jacobson M, Kevy S, Murray MM. Activation of platelet-rich plasma using soluble type I collagen. Int J Oral Maxillofac Surg. 2008;66(4):684–90.

    Article  Google Scholar 

  44. Murray MM, Forsythe B, Chen F, et al. The effect of thrombin on ACL fibroblast interactions with collagen hydrogels. J Orthop Res. 2006;24(3):508–15.

    Article  PubMed  CAS  Google Scholar 

  45. Vavken P, Joshi SM, Murray MM. Fibrin concentration affects ACL fibroblast proliferation and collagen synthesis. Knee. 2011;18(1):42–6.

    Article  PubMed  Google Scholar 

  46. Cheng M, Wang H, Yoshida R, Murray MM. Platelets and plasma proteins are both required to stimulate collagen gene expression by anterior cruciate ligament cells in three-dimensional culture. Tissue Eng Part A. 2010;16(5):1479–89.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Research reported in this chapter was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Numbers RO1-AR054099 and RO1-AR056834. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryu Yoshida MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yoshida, R., Murray, M.M. (2013). Scaffolds and Biologic Additives for ACL Surgery. In: Murray, M., Vavken, P., Fleming, B. (eds) The ACL Handbook. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0760-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0760-7_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0759-1

  • Online ISBN: 978-1-4614-0760-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics