Skip to main content

Glycosphingolipids and Kidney Disease

  • Chapter
Sphingolipids and Metabolic Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 721))

Abstract

Glycosphingolipids, derived from the addition of sugar-moieties to the sphingolipid ceramide, are highly abundant in the kidney. Glycosphingolipids are known to play an important role in organ function at least in part from inherited lipid storage diseases such as Anderson-Fabry disease (Fabry’s disease; FD) that results from a mutation in alpha-galactosidase a (α-GLA or α-Gal A), the enzyme responsible for catalyzing the removal of terminal galactose residues from glycosphingolipids. The inactivation in α-GLA in FD results in the accumulation of glycosphingolipids, including globosides and lactosylceramides, which manifests as several common pathologies including end-stage kidney disease. More recently, glycosphingolipids and other sphingolipids have become increasingly recognized for their roles in a variety of other kidney diseases including polycystic kidney disease, acute kidney injury, glomerulonephritis, diabetic nephropathy and kidney cancer. This chapter reviews evidence supporting a mechanistic role for glycosphingolipids in kidney disease and discusses data implicating a role for these lipids in kidney disease resulting from metabolic syndrome. Importantly, inhibitors of glycosphingolipid synthesis are well tolerated in animal models as well as in humans. Thus, an increased understanding of the mechanisms by which altered renal glycosphingolipid metabolism leads to kidney disease has great therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008; 9(2): 139–150.

    PubMed  CAS  Google Scholar 

  2. Clarke CJ, Snook CF, Tani M et al. The extended family of neutral sphingomyelinases. Biochemistry 2006; 45(38):11247–11256.

    PubMed  CAS  Google Scholar 

  3. Smith EL, Schuchman EH. The unexpectedrole of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J 2008; 22(10):3419–3431.

    PubMed  CAS  Google Scholar 

  4. Menaldino DS, Bushnev A, Sun A et al. Sphingoid bases and de novoceramide synthesis: enzymes involved, pharmacology and mechanisms of action. Pharmacol Res 2003; 47(5):373–381.

    PubMed  CAS  Google Scholar 

  5. Perry DK. Serine palmitoyltransferase: role in apoptotic de novo ceramide synthesis and other stress responses. Biochim Biophys Acta 2002; 1585(2–3):146–152.

    PubMed  CAS  Google Scholar 

  6. Mandon EC, Ehses I, Rother J et al. Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase and sphinganine N-acyltransferase in mouse liver. J Biol Chem 1992; 267(16):11144–11148.

    PubMed  CAS  Google Scholar 

  7. Mao C, Obeid LM. Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine and sphingosine-1-phosphate. Biochim Biophys Acta 2008; 1781(9):424–434.

    PubMed  CAS  Google Scholar 

  8. Pewzner-Jung Y, Ben-Dor S, Futerman AH. When do lasses (longevity assurance genes) become CerS (ceramide synthases)? Insights into the regulation of ceramide synthesis. J Biol Chem 2006; 281(35): 25001–25005.

    PubMed  CAS  Google Scholar 

  9. Riebeling C, Allegood JC, Wang E et al. Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J Biol Chem 2003; 278(44):43452–43459.

    PubMed  CAS  Google Scholar 

  10. Mizutani Y, Kihara A, Igarashi Y. Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem J 2005; 390(Pt 1):263–271.

    PubMed  CAS  Google Scholar 

  11. Schiffmann S, Ziebell S, Sandner J et al. Activation of ceramide synthase 6 by celecoxib leads to a selective induction of C16:0-ceramide. Biochem Pharmacol 80(11):1632–1640.

    Google Scholar 

  12. Pewzner-Jung Y, Brenner O, Braun S et al. A critical role for ceramide synthase 2 in liver homeostasis: II. Insights into molecular changes leading to hepatopathy. J Biol Chem 285(14): 10911–10923.

    Google Scholar 

  13. Pewzner-Jung Y, Park H, Laviad EL et al. A critical role for ceramide synthase 2 in liver homeostasis: I. Alterations in lipid metabolic pathways. J Biol Chem 285(14):10902–10910.

    Google Scholar 

  14. Yacoub A, Hamed HA, Allegood J et al. PERK-dependent regulation of ceramide synthase 6 and thioredoxin play a key role in mda-7/IL-24-induced killing of primary human glioblastoma multiforme cells. Cancer Res 70(3): 1120–1129.

    Google Scholar 

  15. Erez-Roman R, Pienik R, Futerman AH. Increased ceramide synthase 2 and 6 mRNA levels in breast cancer tissues and correlation with sphingosine kinase expression. Biochem Biophys Res commun 391(1):219–223.

    Google Scholar 

  16. Imgrund S et al. Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration and hepatocarcinomas. J Biol Chem 2009; 284(48):33549–33560.

    PubMed  CAS  Google Scholar 

  17. Sridevi P, Alexander H, Laviad EL et al. Stress-induced ER to Golgi translocation of ceramide synthase 1 is dependent on proteasomal processing. Exp Cell Res 316(1):78–91.

    Google Scholar 

  18. Senkal CE, Ponnusamy S, Bielawski J et al. Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways. FASEB J 24(1):296–308.

    Google Scholar 

  19. Sridevi P, Alexander H, Laviad EL et al. Ceramide synthase 1 is regulated by proteasomal mediated turnover. Biochim Biophys Acta 2009; 1793(7):1218–1227.

    PubMed  CAS  Google Scholar 

  20. White-Gilbertson S, Mullen T, Senkal C et al. Ceramide synthase 6 modulates TRAIL sensitivity and nuclear translocation of active caspase-3 in colon cancer cells. Oncogene 2009; 28(8): 1132–1141.

    PubMed  CAS  Google Scholar 

  21. Min J, Mesika A, Sivaguru M et al. (Dihydro)ceramide synthase 1 regulated sensitivity to cisplatin is associated with the activation of p38 mitogen-activated protein kinase and is abrogated by sphingosine kinase 1. Mol Cancer Res 2007; 5(8):801–812.

    PubMed  CAS  Google Scholar 

  22. Xu Z, Zhou J, McCoy DM et al. LASS5 is the predominant ceramide synthase isoform involved in de novo sphingolipid synthesis in lung epithelia. J Lipid Res 2005; 46(6):1229–1238.

    PubMed  CAS  Google Scholar 

  23. Spassieva SD, Mullen TD, Townsend DM et al. Disruption of ceramide synthesis by CerS2 down-regulation leads to autophagy and the unfolded protein response. Biochem J 2009; 424(2):273–283.

    PubMed  CAS  Google Scholar 

  24. Taha TA, Mullen TD, Obeid LM. A house divided: ceramide, sphingosine and sphingosine-1-phosphate in programmed cell death. Biochim Biophys Acta 2006; 1758(12):2027–2036.

    PubMed  CAS  Google Scholar 

  25. Taha TA, Hannun YA, Obeid LM. Sphingosine kinase: biochemical and cellular regulation and role in disease. J Biochem Mol Biol 2006; 39(2): 113–131.

    PubMed  CAS  Google Scholar 

  26. Buton X, Hervé P, Kubelt J et al. Transbilayer movement of monohexosylsphingolipids in endoplasmic reticulum and Golgi membranes. Biochemistry 2002; 41(43):13106–13115.

    PubMed  CAS  Google Scholar 

  27. Halter D, Neumann S, van Dijk SM et al. Pre-and postGolgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 2007; 179(1):101–115.

    PubMed  CAS  Google Scholar 

  28. Chatterjee S, Pandey A. The Yin and Yang of lactosylceramide metabolism: implications in cell function. Biochim Biophys Acta 2008; 1780(3):370–382.

    PubMed  CAS  Google Scholar 

  29. Kolter T, Doering T, Wilkening G et al. Recent advances in the biochemistry of glycosphingolipid metabolism. Biochem Soc Trans 1999; 27(4):409–415.

    PubMed  CAS  Google Scholar 

  30. Memon RA, Holleran WM, Uchida Y et al. Regulation of sphingolipid and glycosphingolipid metabolism in extrahepatic tissues by endotoxin. J Lipid Res 2001; 42(3):452–459.

    PubMed  CAS  Google Scholar 

  31. Whitmore CD, Hindsgaul O, Palcic MM et al. Metabolic cytometry. Glycosphingolipid metabolism in single cells. Anal Chem 2007; 79(14):5139–5142.

    PubMed  CAS  Google Scholar 

  32. Xu YH, Barnes S, Sun Y et al. Multi-system disorders of glycosphingolipid and ganglioside metabolism. J Lipid Res 51(7):1643–1675.

    Google Scholar 

  33. Degroote S, Wolthoorn J, van Meer G. The cell biology of glycosphingolipids. Semin Cell Dev Biol 2004; 15(4):375–387.

    PubMed  CAS  Google Scholar 

  34. Morales A, Colell A, Mari M et al. Glycosphingolipids and mitochondria: role in apoptosis and disease. Glycoconj J 2004; 20(9):579–588.

    PubMed  CAS  Google Scholar 

  35. Anastasia L, Papini N, Colazzo F et al. NEU3 sialidase strictly modulates GM3 levels in skeletal myoblasts C2C12 thus favoring their differentiation and protecting them from apoptosis. J Biol Chem 2008; 283(52):36265–36271.

    PubMed  CAS  Google Scholar 

  36. Zanchetti G, Colombi P, Manzoni M et al. Sialidase NEU3 is a peripheral membrane protein localized on the cell surface and in endosomal structures. Biochem J 2007; 408(2):211–219.

    PubMed  CAS  Google Scholar 

  37. Magesh S, Suzuki T, Miyagi T et al. Homology modeling of human sialidase enzymes NEU1, NEU3 and NEU4 based on the crystal structure of NEU2: hints for the design of selective NEU3 inhibitors. J Mol Graph Model 2006; 25(2):196–207.

    PubMed  CAS  Google Scholar 

  38. Wang Y, Yamaguchi K, Wada T et al. A close association of the ganglioside-specific sialidase Neu3 with caveolin in membrane microdomains. J Biol Chem 2002; 277(29):26252–26259.

    PubMed  CAS  Google Scholar 

  39. Monti E, Bassi MT, Papini N et al. Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane. Biochem J 2000; 349(Pt 1):343–351.

    PubMed  CAS  Google Scholar 

  40. Bigi A, Morosi L, Pozzi C et al. Human sialidase NEU4 long and short are extrinsic proteins bound to outer mitochondrial membrane and the endoplasmic reticulum, respectively. Glycobiology 20(2):148–157.

    Google Scholar 

  41. Yamaguchi K, Hata K, Koseki K et al. Evidence for mitochondrial localization of a novel human sialidase (NEU4). Biochem J 2005; 390(Pt 1):85–93.

    PubMed  CAS  Google Scholar 

  42. Aerts JM, Hollak CE, Boot RG et al. Substrate reduction therapy of glycosphingolipid storage disorders. J Inherit Metab Dis 2006; 29(2–3):449–456.

    PubMed  Google Scholar 

  43. Kolter T, Sandhoff K. Sphingolipid metabolism diseases. Biochim Biophys Acta 2006;1758(12):2057–2079.

    PubMed  CAS  Google Scholar 

  44. Lachmann RH. Miglustat: substrate reduction therapy for glycosphingolipid lysosomal storage disorders. Drugs today (Barc) 2006; 42(1):29–38.

    CAS  Google Scholar 

  45. Ozkara HA. Recent advances in the biochemistry and genetics of sphingolipidoses. Brain Dev 2004; 26(8):497–505.

    PubMed  Google Scholar 

  46. Platt FM et al. New developments in treating glycosphingolipid storage diseases. Adv Exp Med Biol 2005; 564:117–126.

    PubMed  CAS  Google Scholar 

  47. Raas-Rothschild A, Pankova-Kholmyansky I, Kacher Yet al. Glycosphingolipidoses: beyond the enzymatic defect. Glycoconj J 2004; 21(6):295–304.

    PubMed  CAS  Google Scholar 

  48. Sawkar AR, D’Haeze W, Kelly JW. Therapeutic strategies to ameliorate lysosomal storage disorders—a focus on Gaucher disease. Cell Mol Life Sci 2006; 63(10): 1179–1192.

    PubMed  CAS  Google Scholar 

  49. Sillence DJ. New insights into glycosphingolipid functions—storage, lipid rafts and translocators. Int Rev Cytol 2007; 262:151–189.

    PubMed  CAS  Google Scholar 

  50. Brasitus TA, Schachter D. Lipid dynamics and lipid-protein interactions in rat enterocyte basolateral and microvillus membranes. Biochemistry 1980; 19(12):2763–2769.

    PubMed  CAS  Google Scholar 

  51. Forstner GG, Tanaka K, Isselbacher KJ. Lipid composition of the isolated rat intestinal microvillus membrane. Biochem J 1968; 109(1):51–59.

    PubMed  CAS  Google Scholar 

  52. Kawai K, Fujita M, Nakao M. Lipid components of two different regions of an intestinal epithelial cell membrane of mouse. Biochim Biophys Acta 1974; 369(2):222–233.

    PubMed  CAS  Google Scholar 

  53. Stubbs CD, Ketterer B, Hicks RM. The isolation and analysis of the luminal plasma membrane of calf urinary bladder epithelium. Biochim Biophys Acta 1979; 558(1):58–72.

    PubMed  CAS  Google Scholar 

  54. Fanzani A, Giuliani R, Colombo F et al. Overexpression of cytosolic sialidase Neu2 induces myoblast differentiation in C2C12 cells. FEBS Lett 2003; 547(1–3):183–188.

    PubMed  CAS  Google Scholar 

  55. Monti E, Preti A, Nesti C et al. Expression of a novel human sialidase encoded by the NEU2 gene. Glycobiology 1999; 9(12):1313–1321.

    PubMed  CAS  Google Scholar 

  56. Monti E, Preti A, Rossi E et al. Cloning and characterization of NEU2, a human gene homologous to rodent soluble sialidases. Genomics 1999; 57(1):137–143.

    PubMed  CAS  Google Scholar 

  57. Young WW Jr Lutz MS, Blackburn WA. Endogenous glycosphingolipids move to the cell surface at a rate consistent with bulk flow estimates. J Biol Chem 1992; 267(17): 12011–12015.

    PubMed  CAS  Google Scholar 

  58. van Meer G, Lisman Q. Sphingolipid transport: rafts and translocators. J Biol Chem 2002; 277(29):25855–25858.

    PubMed  Google Scholar 

  59. Marks DL, Pagano RE. Endocytosis and sorting of glycosphingolipids in sphingolipid storage disease. Trends Cell Biol 2002; 12(12):605–613.

    PubMed  CAS  Google Scholar 

  60. van Meer G, Stelzer EH, Wijnaendts-van-Resandt RW et al. Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells. J Cell Biol 1987; 105(4):1623–1635.

    PubMed  Google Scholar 

  61. Sharma DK, Choudhury A, Singh RD et al. Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling. J Biol Chem 2003; 278(9):7564–7572.

    PubMed  CAS  Google Scholar 

  62. Singh RD, Puri V, Valiyaveettil JT et al. Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol Biol cell 2003; 14(8):3254–3265.

    PubMed  CAS  Google Scholar 

  63. Warnock DE, Lutz MS, Blackburn WA et al. Transport of newly synthesized glucosylceramide to the plasma membrane by a nonGolgi pathway. Proc Natl Acad Sci USA 1994; 91(7):2708–2712.

    PubMed  CAS  Google Scholar 

  64. Lin X, Mattjus P, Pike HM et al. Cloning and expression of glycolipid transfer protein from bovine and porcine brain. J Biol Chem 2000; 275(7):5104–5110.

    PubMed  CAS  Google Scholar 

  65. Gupta G, Surolia A. Glycosphingolipids in microdomain formation and their spatial organization. FEBS Lett 584(9): 1634–1641.

    Google Scholar 

  66. Igarashi Y, Kannagi R. Glycosphingolipids as mediators of phenotypic changes associated with development and cancer progression. J Biochem 147(1):3–8.

    Google Scholar 

  67. Sonnino S, Aureli M, Loberto N et al. Fine tuning of cell functions through remodeling of glycosphingolipids by plasma membrane-associated glycohydrolases. FEBS Lett 584(9):1914–1922.

    Google Scholar 

  68. Guan F, Handa K, Hakomori SI. Specific glycosphingolipids mediate epithelial-to-mesenchymal transition of human and mouse epithelial cell lines. Proc Natl Acad Sci USA 2009; 106(18):7461–7466.

    PubMed  CAS  Google Scholar 

  69. Jung JU, Ko K, Lee DH et al. The roles of glycosphingolipids in the proliferation and neural differentiation of mouse embryonic stem cells. Exp Mol Med 2009; 41(12):935–945.

    PubMed  CAS  Google Scholar 

  70. Langeveld M, Aerts JM. Glycosphingolipids and insulin resistance. Prog Lipid Res 2009; 48(3–4):196–205.

    PubMed  CAS  Google Scholar 

  71. Sonnino S et al. Role of very long fatty acid-containing glycosphingolipids in membrane organization and cell signaling: the model of lactosylceramide in neutrophils. Glycoconj J 2009; 26(6):615–621.

    PubMed  CAS  Google Scholar 

  72. Wennekes T et al. Glycosphingolipids—nature, function and pharmacological modulation. Angew Chem Int Ed Engl 2009; 48(47):8848–8869.

    PubMed  CAS  Google Scholar 

  73. Westerlund B, Slotte JP. How the molecular features of glycosphingolipids affect domain formation in fluid membranes. Biochim Biophys Acta 2009; 1788(1):194–201.

    PubMed  CAS  Google Scholar 

  74. Takiar V, Caplan MJ. Telling kidneys to cease and decyst. Nat Med 16(7):751–752.

    Google Scholar 

  75. Gnewuch C, Jaques G, Havemann K et al. Re-assessment of acidic glycosphingolipids in small-cell-lung-cancer tissues and cell lines. Int J cancer Suppl 1994; 8:125–126.

    PubMed  CAS  Google Scholar 

  76. Hakomori S. New directions in cancer therapy based on aberrant expression of glycosphingolipids: anti-adhesion and ortho-signaling therapy. Cancer cells 1991; 3(12):461–470.

    PubMed  CAS  Google Scholar 

  77. Shida K, Misonou Y, Korekane H et al. Unusual accumulation of sulfated glycosphingolipids in colon cancer cells. Glycobiology 2009; 19(9):1018–1033.

    PubMed  CAS  Google Scholar 

  78. Suzuki M, Ando O, Ohta T et al. High expression of glycosphingolipids involved in procoagulant activity of cancer cells. Oncol Rep 1999; 6(1):113–115.

    PubMed  CAS  Google Scholar 

  79. Bieberich E. Integration of glycosphingolipid metabolism and cell-fate decisions in cancer and stem cells: review and hypothesis. Glycoconj J 2004; 21(6):315–327.

    PubMed  CAS  Google Scholar 

  80. Cabot MC, Giuliano AE, Volner A et al. Tamoxifen retards glycosphingolipid metabolism in human cancer cells. FEBS Lett 1996; 394(2):129–131.

    PubMed  CAS  Google Scholar 

  81. Gouaze-Andersson V, Cabot MC. Glycosphingolipids and drug resistance. Biochim Biophys Acta 2006; 1758(12):2096–2103.

    PubMed  CAS  Google Scholar 

  82. Gu Y, Zhang J, Mi W et al. Silencing of GM3 synthase suppresses lung metastasis of murine breast cancer cells. Breast Cancer Res 2008; 10(1):R1.

    PubMed  Google Scholar 

  83. Hakomori S. Cancer-associated glycosphingolipid antigens: their structure, organization and function. Acta Anat (Basel) 1998; 161(1–4):79–90.

    CAS  Google Scholar 

  84. Kovbasnjuk O, Mourtazina R, Baibakov B et al. The glycosphingolipid globotriaosylceramide in the metastatic transformation of colon cancer. Proc Natl Acad Sci USA 2005; 102(52):19087–19092.

    PubMed  CAS  Google Scholar 

  85. Lavie Y et al. Agents that reverse multidrug resistance, tamoxifen, verapamil and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J Biol Chem 1997; 272(3): 1682–1687.

    PubMed  CAS  Google Scholar 

  86. Messner MC, Cabot MC. Glucosylceramide in humans. Adv Exp Med Biol 688:156–164.

    Google Scholar 

  87. Miyagi T, Wada T, Yamaguchi K. Roles of plasma membrane-associated sialidase NEU3 inhuman cancers. Biochim Biophys Acta 2008; 1780(3):532–537.

    PubMed  CAS  Google Scholar 

  88. Morales A, Fernandez-Checa JC. Pharmacological modulation of sphingolipids and role in disease and cancer cell biology. Mini Rev Med Chem 2007; 7(4):371–382.

    PubMed  CAS  Google Scholar 

  89. Radin NS. Chemotherapy by slowing glucosphingolipid synthesis. Biochem Pharmacol 1999; 57(6):589–595.

    PubMed  CAS  Google Scholar 

  90. Shida K, Korekane H, Misonou Y et al. Novel ganglioside found in adenocarcinoma cells of Lewis-negative patients. Glycobiology 20(12):1594–1606.

    Google Scholar 

  91. Zhang X, Kiechle FL. Review: glycosphingolipids in health and disease. Ann Clin Lab Sci 2004; 34(1):3–13.

    PubMed  Google Scholar 

  92. Chatterjee S, Wei H. Roles of glycosphingolipids in cell signaling: adhesion, migration and proliferation. Methods Enzymol 2003; 363:300–312.

    PubMed  CAS  Google Scholar 

  93. Kimball PM, Hammonds L, McKibbin JM et al. In vitro effects of glycosphingolipids on human tumor cell proliferation. Proc Soc Exp Biol Med 1981; 166(1):107–112.

    PubMed  CAS  Google Scholar 

  94. Bhunia AK, Schwarzmann G, Chatterjee S. GD3 recruits reactive oxygen species to induce cell proliferation and apoptosis in human aortic smooth muscle cells. J Biol Chem 2002; 277(19):16396–16402.

    PubMed  CAS  Google Scholar 

  95. Nishio M, Tajima O, Furukawa K et al. Over-expression of GM1 enhances cell proliferation with epidermal growth factor without affecting the receptor localization in the microdomain in PC12 cells. Int J Oncol 2005; 26(1): 191–199.

    PubMed  CAS  Google Scholar 

  96. Pannu R, Singh AK, Singh I. A novel role of lactosylceramide in the regulation of tumor necrosis factor alpha-mediated proliferation of rat primary astrocytes. Implications for astrogliosis following neurotrauma. J Biol Chem 2005; 280(14):13742–13751.

    PubMed  CAS  Google Scholar 

  97. Yanagisawa M, Liour SS, Yu RK. Involvement of gangliosides in proliferation of immortalized neural progenitor cells. J Neurochem 2004; 91(4):804–812.

    PubMed  CAS  Google Scholar 

  98. Chatterjee S. Oxidized low density lipoproteins and lactosylceramide both stimulate the expression of proliferating cell nuclear antigen and the proliferation of aortic smooth muscle cells. Indian J Biochem Biophys 1997; 34(1–2):56–60.

    PubMed  CAS  Google Scholar 

  99. Chatterjee S, Shi WY, Wilson P et al. Role of lactosylceramide and MAP kinase in the proliferation of proximal tubular cells in human polycystic kidney disease. J Lipid Res 1996; 37(6): 1334–1344.

    PubMed  CAS  Google Scholar 

  100. Ozbayraktar FB, Ulgen KO. Molecular facets of sphingolipids: mediators of diseases. Biotechnol J 2009; 4(7):1028–1041.

    PubMed  CAS  Google Scholar 

  101. Liu YY, Han TY, Giuliano AE et al. Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J Biol Chem 1999; 274(2):1140–1146.

    PubMed  CAS  Google Scholar 

  102. Liu YY, Han TY, Yu JY et al. Oligonucleotides blocking glucosylceramide synthase expression selectively reverse drug resistance in cancer cells. J Lipid Res 2004; 45(5):933–940.

    PubMed  CAS  Google Scholar 

  103. Colell A, Morales A, Fernández-Checa JC et al. Ceramide generated by acidic sphingomyelinase contributes to tumor necrosis factor-alpha-mediated apoptosis in human colonHT-29 cells through glycosphingolipids formation. Possible role of ganglioside GD3. FEBS Lett 2002; 526(1–3):135–141.

    PubMed  CAS  Google Scholar 

  104. De Maria R, Lenti L, Malisan F et al. Requirement for GD3 ganglioside in CD95-and ceramide-induced apoptosis. Science 1997; 277(5332): 1652–1655.

    PubMed  Google Scholar 

  105. Malisan F, Testi R. GD3 ganglioside and apoptosis. Biochim Biophys Acta 2002; 1585(2–3):179–187.

    PubMed  CAS  Google Scholar 

  106. Hasegawa T, Sugeno N, Takeda A et al. Role of Neu4L sialidase and its substrate ganglioside GD3 in neuronal apoptosis induced by catechol metabolites. FEBS Lett 2007; 581(3):406–412.

    PubMed  CAS  Google Scholar 

  107. Omran OM, Saqr HE, Yates AJ. Molecular mechanisms of GD3-induced apoptosis in U-1242 MG glioma cells. Neurochem Res 2006; 31(10):1171–1180.

    PubMed  CAS  Google Scholar 

  108. Saqr HE, Omran O, Dasgupta S et al. Endogenous GD3 ganglioside induces apoptosis in U-1242 MG glioma cells. J Neurochem 2006; 96(5):1301–1314.

    PubMed  CAS  Google Scholar 

  109. Ha KT, Lee YC, Kim CH. Overexpression of GD3 synthase induces apoptosis of vascular endothelial ECV304 cells through downregulation of Bcl-2. FEBS Lett 2004; 568(1–3): 183–187.

    PubMed  CAS  Google Scholar 

  110. Malisan F, Testi R. GD3 in cellular ageing and apoptosis. Exp Gerontol 2002; 37(10–11): 1273–1282.

    PubMed  CAS  Google Scholar 

  111. Giammarioli AM, Garofalo T, Sorice M et al. GD3 glycosphingolipid contributes to Fas-mediated apoptosis via association with ezrin cytoskeletal protein. FEBS Lett 2001; 506(1):45–50.

    PubMed  CAS  Google Scholar 

  112. Colell A, García-Ruiz C, Roman J et al. Ganglioside GD3 enhances apoptosis by suppressing the nuclear factor-kappa B-dependent survival pathway. FASEB J 2001; 15(6): 1068–1070.

    PubMed  CAS  Google Scholar 

  113. Rippo MR, Malisan F, Ravagnan L et al. GD3 ganglioside as an intracellular mediator of apoptosis. Eur Cytokine Netw 2000; 11(3):487–488.

    PubMed  CAS  Google Scholar 

  114. Kristal BS, Brown AM. Ganglioside GD3, the mitochondrial permeability transition and apoptosis. Ann N Y Acad Sci 1999; 893:321–324.

    PubMed  CAS  Google Scholar 

  115. Farina F, Cappello F, Todaro M et al. Involvement of caspase-3 and GD3 ganglioside in ceramide-induced apoptosis in farber disease. J Histochem Cytochem 2000; 48(1):57–62.

    PubMed  CAS  Google Scholar 

  116. Scorrano L, Petronilli V, Di Lisa F et al. Commitment to apoptosis by GD3 ganglioside depends on opening of the mitochondrial permeability transition pore. J Biol Chem 1999; 274(32):22581–22585.

    PubMed  CAS  Google Scholar 

  117. De Maria R, Rippo MR, Schuchman EH et al. Acidic sphingomyelinase (ASM) is necessary for fas-induced GD3 ganglioside accumulation and efficient apoptosis of lymphoid cells. J Exp Med 1998; 187(6): 897–902.

    PubMed  Google Scholar 

  118. Hakomori SI. Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconj J 2000; 17(3–4):143–151.

    PubMed  CAS  Google Scholar 

  119. Fredman P. Sphingolipids and cell signalling. J Inherit Metab Dis 1998; 21(5):472–480.

    PubMed  CAS  Google Scholar 

  120. Hakomori S. Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem 1990; 265(31):18713–18716.

    PubMed  CAS  Google Scholar 

  121. Hakomori S, Igarashi Y. Functional role of glycosphingolipids in cell recognition and signaling. J Biochem 1995; 118(6):1091–1103.

    PubMed  CAS  Google Scholar 

  122. Ideo H, Seko A, Ishizuka I et al. The N-terminal carbohydrate recognition domain of galectin-8 recognizes specific glycosphingolipids with high affinity. Glycobiology 2003; 13(10):713–723.

    PubMed  CAS  Google Scholar 

  123. Ideo H, Seko A, Yamashita K. Galectin-4 binds to sulfated glycosphingolipids and carcinoembryonic antigen in patches on the cell surface of human colon adenocarcinoma cells. J Biol Chem 2005; 280(6): 4730–4737.

    PubMed  CAS  Google Scholar 

  124. Kinjo Y, Wu D, Kim G et al. Recognition of bacterial glycosphingolipids by natural killer T-cells. Nature 2005; 434(7032):520–525.

    PubMed  CAS  Google Scholar 

  125. Roche N, Ilver D, Angström J et al. Human gastric glycosphingolipids recognized by Helicobacter pylori vacuolating cytotoxin VacA. Microbes Infect 2007; 9(5):605–614.

    PubMed  CAS  Google Scholar 

  126. Schnaar RL. Glycosphingolipids in cell surface recognition. Glycobiology 1991; 1(5):477–485.

    PubMed  CAS  Google Scholar 

  127. Lopez PH, Schnaar RL. Gangliosides in cell recognition and membrane protein regulation. Curr Opin Struct Biol 2009; 19(5):549–557.

    PubMed  CAS  Google Scholar 

  128. Won JS, Singh AK, Singh I. Lactosylceramide: a lipid second messenger in neuroinflammatory disease. J Neurochem 2007; 103Suppl 1:180–191.

    PubMed  CAS  Google Scholar 

  129. Zarate YA, Hopkin RJ. Fabry’s disease. Lancet 2008; 372(9647): 1427–1435.

    PubMed  CAS  Google Scholar 

  130. Nixon GF. Sphingolipids in inflammation: pathological implications and potential therapeutic targets. Br J Pharmacol 2009; 158(4):982–993.

    PubMed  CAS  Google Scholar 

  131. Kitatani K, Sheldon K, Anelli V et al. Acid beta-glucosidase 1 counteracts p38delta-dependent induction of interleukin-6: possible role for ceramide as an anti-inflammatory lipid. J Biol Chem 2009; 284(19):12979–12988.

    PubMed  CAS  Google Scholar 

  132. van Eijk M, Aten J, Bijl N et al. Reducing glycosphingolipid content in adipose tissue of obese mice restores insulin sensitivity, adipogenesis and reduces inflammation. PLoS One 2009; 4(3):e4723.

    PubMed  Google Scholar 

  133. Vance DE. Fundamental research is the basis for understanding and treatment of many human diseases. FEBS Lett 2006; 580(23):5430–5435.

    PubMed  CAS  Google Scholar 

  134. Sessa A, Meroni M, Battini G et al. Renal pathological changes in fabry disease. J Inherit Metab Dis 2001; 24Suppl 2:66–70; discussion 65.

    PubMed  Google Scholar 

  135. Rizk D, Chapman AB. Cystic and inherited kidney diseases. Am J Kidney Dis 2003; 42(6):1305–1317.

    PubMed  Google Scholar 

  136. Grünfeld JP, Lidove O, Joly D et al. Renal disease in Fabry patients. J Inherit Metab Dis 2001; 24Suppl 2:71–74; discussion 65.

    PubMed  Google Scholar 

  137. Grunfeld JP, Lidove O, Barbey F. Heterozygotes with Fabry’s disease. Contrib Nephrol 2001; 136:208–210.

    PubMed  Google Scholar 

  138. Christensen EI, Zhou Q, Sørensen SS et al. Distribution of alpha-galactosidase A in normal human kidney and renal accumulation and distribution of recombinant alpha-galactosidase A in Fabry mice. J Am Soc Nephrol 2007; 18(3):698–706.

    PubMed  CAS  Google Scholar 

  139. Breunig F, Wanner C. Update on fabry disease: kidney involvement, renal progression and enzyme replacement therapy. J Nephrol 2008; 21(1):32–37.

    PubMed  Google Scholar 

  140. Sessa A, Meroni M, Righetti M et al. Autosomal recessive polycystic kidney disease. Contrib Nephrol 2001; 136:50–56.

    PubMed  Google Scholar 

  141. Natoli TA, Smith LA, Rogers KA et al. Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models. Nat Med.

    Google Scholar 

  142. Biswas S, Biswas K, Richmond A et al. Elevated levels of select gangliosides in T-cells from renal cell carcinoma patients is associated with T-cell dysfunction. J Immunol 2009; 183(8):5050–5058.

    PubMed  CAS  Google Scholar 

  143. Scursoni AM, Galluzzo L, Camarero S et al. Detection and characterization of N-glycolyated gangliosides in Wilms tumor by immunohistochemistry. Pediatr Dev Pathol 13(1): 18–23.

    Google Scholar 

  144. Das T, Sa G, Hilston C et al. GM1 and tumor necrosis factor-alpha, overexpressed in renal cell carcinoma, synergize to induce t-cell apoptosis. Cancer Res 2008; 68(6):2014–2023.

    PubMed  CAS  Google Scholar 

  145. Biswas K, Richmond A, Rayman P et al. GM2 expression in renal cell carcinoma: potential role in tumor-induced T-cell dysfunction. Cancer Res 2006; 66(13):6816–6825.

    PubMed  CAS  Google Scholar 

  146. Senda M, Ito A, Tsuchida A et al. Identification and expression of a sialyltransferase responsible for the synthesis of disialylgalactosylgloboside in normal and malignant kidney cells: downregulation of ST6GalNAc VI in renal cancers. Biochem J 2007; 402(3):459–470.

    PubMed  CAS  Google Scholar 

  147. Miyagi T. Aberrant expression of sialidase and cancer progression. Proc Jpn Acad Ser B Phys Biol Sci 2008;84(10):407–418.

    PubMed  CAS  Google Scholar 

  148. Miyagi T, Wada T, Yamaguchi K et al. Human sialidase as a cancer marker. Proteomics 2008; 8(16):3303–3311.

    PubMed  CAS  Google Scholar 

  149. Maruyama R, Saito S, Bilim V et al. High incidence of GalNAc disialosyl lactotetraosylceramide in metastatic renal cell carcinoma. Anticancer Res 2007; 27(6C):4345–4350.

    PubMed  Google Scholar 

  150. Sa G, Das T, Moon C et al. GD3, an overexpressed tumor-derived ganglioside, mediates the apoptosis of activated but not resting T-cells. Cancer Res 2009; 69(7):3095–3104.

    PubMed  CAS  Google Scholar 

  151. Andrews BS, Eisenberg RA, Theofilopoulos AN et al. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med 1978; 148(5):1198–1215.

    PubMed  CAS  Google Scholar 

  152. Lee HS, Lee MS, Lee SM et al. Histological grading of IgA nephropathy predicting renal outcome: revisiting H. S. Lee’s glomerular grading system. Nephrol Dial transplant 2005; 20(2):342–348.

    PubMed  Google Scholar 

  153. Vogtländer NP, van der Vlag J, Bakker MA et al. Expression of sialidase and dystroglycan in human glomerular diseases. Nephrol Dial transplant 25(2):478–484.

    Google Scholar 

  154. Vogtländer NP, Visch HJ, Bakker MA et al. Ligation of alpha-dystroglycan on podocytes induces intracellular signaling: a new mechanism forpodocyte effacement? PLoS One 2009; 4(6):e5979.

    PubMed  Google Scholar 

  155. Miyagi T, Tsuiki S. Evidence for sialidase hydrolyzing gangliosides GM2 and GM1 in rat liver plasma membrane. FEBS Lett 1986; 206(2):223–228.

    PubMed  CAS  Google Scholar 

  156. Kanwar YS, Farquhar MG. Detachment of endothelium and epithelium from the glomerular basement membrane produced by kidney perfusion with neuraminidase. Lab Invest 1980; 42(3):375–384.

    PubMed  CAS  Google Scholar 

  157. Gelberg H, Healy L, Whiteley H et al. In vivo enzymatic removal of alpha 2→6-linked sialic acid from the glomerular filtration barrier results in podocyte charge alteration and glomerular injury. Lab Invest 1996; 74(5):907–920.

    PubMed  CAS  Google Scholar 

  158. Orlando RA, Takeda T, Zak B et al. The glomerular epithelial cell anti-adhesin podocalyxin associates with the actin cytoskeleton through interactions with ezrin. J Am Soc Nephrol 2001; 12(8):1589–1598.

    PubMed  CAS  Google Scholar 

  159. Andrews PM. Glomerular epithelial alterations resulting from sialic acid surface coat removal. Kidney Int 1979; 15(4):376–385.

    PubMed  CAS  Google Scholar 

  160. Galeano B, Klootwijk R, Manoli I et al. Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. J Clin Invest 2007; 117(6): 1585–1594.

    PubMed  CAS  Google Scholar 

  161. Quaggin SE. Sizing up sialic acid in glomerular disease. J Clin Invest 2007; 117(6):1480–1483.

    PubMed  CAS  Google Scholar 

  162. Ueno S, Saito S, Wada T et al. Plasma membrane-associated sialidase is up-regulated in renal cell carcinoma and promotes interleukin-6-induced apoptosis suppression and cell motility. J Biol Chem 2006;281(12):7756–7764.

    PubMed  CAS  Google Scholar 

  163. Holthöfer H, Reivinen J, Solin ML et al. Decrease of glomerular disialogangliosides in puromycin nephrosis of the rat. Am J Pathol 1996; 149(3): 1009–1015.

    PubMed  Google Scholar 

  164. Trivedi S, Zeier M, Reiser J. Role of podocytes in lupus nephritis. Nephrol Dial Transplant 2009; 24(12):3607–3612.

    PubMed  Google Scholar 

  165. Dong L, Hu S, Chen F et al. Increased expression of ganglioside GM1 inperipheral CD4+ T-cells correlates soluble form of CD30 in Systemic Lupus Erythematosus patients. J Biomed Biotechnol 2010:569053.

    Google Scholar 

  166. Lacetti P, Tombaccini D, Aloj S et al. Gangliosides, the thyrotropin receptor and autoimmune thyroid disease. Adv Exp Med Biol 1984; 174:355–367.

    PubMed  CAS  Google Scholar 

  167. Misasi R, Dionisi S, Farilla L et al. Gangliosides and autoimmune diabetes. Diabetes Metab Rev 1997; 13(3):163–179.

    PubMed  CAS  Google Scholar 

  168. Miyamoto K, Takada K, Furukawa K et al. Roles of complex gangliosides in the development of experimental autoimmune encephalomyelitis. Glycobiology 2008; 18(5):408–413.

    PubMed  CAS  Google Scholar 

  169. Nagai Y, Momoi T, Saito M et al. Ganglioside syndrome, a new autoimmune neurologic disorder, experimentally induced with brain gangliosides. Neurosci Lett 1976; 2(2):107–111.

    PubMed  CAS  Google Scholar 

  170. Ponzin D, Menegus AM, Kirschner G et al. Effects of gangliosides on the expression of autoimmune demyelination in the peripheral nervous system. Ann Neurol 1991; 30(5):678–685.

    PubMed  CAS  Google Scholar 

  171. Steck AJ, Kappos L. Gangliosides and autoimmune neuropathies: classification and clinical aspects of autoimmune neuropathies. J Neurol Neurosurg Psychiatry 1994; 57 Suppl:26–28.

    PubMed  Google Scholar 

  172. Willison HJ. Gangliosides as targets for autoimmune injury to the nervous system. J Neurochem 2007; 103Suppl 1:143–149.

    PubMed  CAS  Google Scholar 

  173. Harvey SJ, Jarad G, Cunningham J et al. Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. Am J Pathol 2007; 171(1):139–152.

    PubMed  CAS  Google Scholar 

  174. Chen S, Wassenhove-McCarthy DJ, Yamaguchi Y et al. Loss of heparan sulfate glycosaminoglycan assembly in podocytes does not lead to proteinuria. Kidney Int 2008; 74(3):289–299.

    PubMed  CAS  Google Scholar 

  175. Rodriguez-Iturbe B, Katiyar VN, Coello J. Neuraminidase activity and free sialic acid levels in the serum of patients with acute poststreptococcal glomerulonephritis. N Engl J Med 1981; 304(25):1506–1510.

    PubMed  CAS  Google Scholar 

  176. Laitinen L, Miettinen A, Tikkanen I et al. Glomerular sialic acid in Heymann nephritis and diacetylbenzidine induced nephropathy in rats. Clin Sci (Lond) 1985; 69(1):57–62.

    CAS  Google Scholar 

  177. Mosquera J, Rodriguez-Iturbe B. Extracellular neuraminidase production of streptococci associated with acute nephritis. Clin Nephrol 1984; 21(1):21–28.

    PubMed  CAS  Google Scholar 

  178. Zador IZ, Deshmukh GD, Kunkel R et al. A role for glycosphingolipid accumulation in the renal hypertrophy of streptozotocin-induced diabetes mellitus. J Clin Invest 1993; 91(3):797–803.

    PubMed  CAS  Google Scholar 

  179. Morral N, Edenberg HJ, Witting SR et al. Effects of glucose metabolism on the regulation of genes of fatty acid synthesis and triglyceride secretion in the liver. J Lipid Res 2007; 48(7):1499–1510.

    PubMed  CAS  Google Scholar 

  180. Aerts JM, Ottenhoff R, Powlson AS et al. Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes 2007; 56(5):1341–1349.

    PubMed  CAS  Google Scholar 

  181. Zhao H, Przybylska M, Wu IH et al. Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes. Diabetes 2007; 56(5):1210–1218.

    PubMed  CAS  Google Scholar 

  182. Yamashita T, Hashiramoto A, Haluzik M et al. Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci USA 2003; 100(6):3445–3449.

    PubMed  CAS  Google Scholar 

  183. Cheng ZJ, Singh RD, Wang TK et al. Stimulation of GLUT4 (glucose transporter isoform 4) storage vesicle formation by sphingolipid depletion. Biochem J 427(1):143–150.

    Google Scholar 

  184. Cohen-Forterre L, Mozere G, Andre J et al. Studies on kidney sialidase in normal and diabetic rats. Biochim Biophys Acta 1984; 801(1):138–145.

    PubMed  CAS  Google Scholar 

  185. Cárdenas A, Schadeck C, Bernard A et al. Depletion of sialic acid without changes in sialidase activity in glomeruli of uninephrectomized diabetic rats. Biochem Med Metab Biol 1991; 46(3):416–421.

    PubMed  Google Scholar 

  186. Baricos WH, Cortez-Schwartz S, Shah SV. Renal neuraminidase. Characterization in normal rat kidney and measurement in experimentally induced nephrotic syndrome. Biochem J 1986; 239(3):705–710.

    PubMed  CAS  Google Scholar 

  187. Boini KM, Zhang C, Xia M et al. Role of sphingolipid mediator ceramide in obesity and renal injury in mice fed a high-fat diet. J Pharmacol Exp Ther 334(3):839–846.

    Google Scholar 

  188. Deevska GM, Nikolova-Karakashian MN. The twists and turns of sphingolipid pathway in glucose regulation. Biochimie.

    Google Scholar 

  189. Wennekes T, Meijer AJ, Groen AK et al. Dual-action lipophilic iminosugar improves glycemic control in obese rodents by reduction of visceral glycosphingolipids and buffering of carbohydrate assimilation. J Med Chem 53(2):689–698.

    Google Scholar 

  190. Yew NS, Zhao H, Hong EG et al. Increased hepatic insulin action in diet-induced obese mice following inhibition of glucosylceramide synthase. PLoS One 5(6):e11239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mather, A.R., Siskind, L.J. (2011). Glycosphingolipids and Kidney Disease. In: Cowart, L.A. (eds) Sphingolipids and Metabolic Disease. Advances in Experimental Medicine and Biology, vol 721. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0650-1_8

Download citation

Publish with us

Policies and ethics