Skip to main content

NKT Cells of Cancer Patients and How Models Can Inform Therapeutic Plans

  • Chapter
  • First Online:
Natural Killer T cells

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1049 Accesses

Abstract

Multiple immune cells contribute to antitumor activity. Adaptive immune cells have specificity and amplified responses to repeated antigen, but require targeting to tumor to avoid excessive autoimmune effects. Innate elements can directly kill tumor cells, have specificity and even a form of memory, and can recruit adaptive responses, but have a finite spectrum of targeting ligands. Invariant natural killer T cells (iNKT) are a subset of innate-like CD1d-restricted T cells with roles in regulating immunity, including immune surveillance against certain pathogens and tumors. iNKT recognize lipid antigens presented by monomorphic MHC-like CD1d expressed by dendritic cells (DC) and other antigen presenting cells (APC) as well as many hemopoietic, prostate, and some other solid tissues and corresponding tumors. Studies of human cancer have revealed frequent and selective numerical and functional defects in iNKT, which correlate with progression, but are reversible in vitro (at least). iNKT can contribute to physiological antitumor responses in animal models. iNKT activation with αGalCer (as originally identified) and newer analogs promotes model tumor rejection and protection from metastasis. However, CD1d-restricted either (either “noninvariant” or iNKT) NKT can also suppress antitumor responses through regulatory cytokine(s). Defects of iNKT appear to be mediated by both intrinsic causes and by impaired stimulatory capacity of DC present in tumor microenvironment (TME). iNKT have great therapeutic potential. Although this potential has been limited to date, apparently by such iNKT defects, combinations such as αGalCer with IL-12 can reverse model defects. This review summarizes progress, pitfalls, and new opportunities to exploitation of NKT cells in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arrenberg P, Halder R, Kumar V. Cross-regulation between distinct natural killer T cell subsets influences immune response to self and foreign antigens. J Cell Physiol. 2009 Feb;218(2):246–50. PMID: 18814145; PMCID: PMC2653050.

    Google Scholar 

  • Beldi G, Wu Y, Banz Y, Nowak M, Miller L, Enjyoji K, Yegutkin G, Candinas D, Exley MA, Robson S. (2008) NKT cell dysfunction in CD39/Entpd1 null mice protects against Con A hepatitis. Hepatol. 48; 841–845.

    Article  PubMed  CAS  Google Scholar 

  • Bellone M, Ceccon M, Grioni M, Jachetti E, Calcinotto A, Napolitano A, Freschi M, Casorati G, Dellabona P. iNKT cells control mouse spontaneous carcinoma independently of tumor-specific cytotoxic T cells. PLoS One. 2010 Jan 13;5(1):e8646. PMID: 20072624; PMCID: PMC2800182.

    Article  PubMed  CAS  Google Scholar 

  • Behar SM, Porcelli SA. CD1-restricted T cells in host defense to infectious diseases. Curr Top Microbiol Immunol. 2007;314:215–50. PMID: 17593663

    Article  PubMed  CAS  Google Scholar 

  • Balato A, Unutmaz D, Gaspari AA. Natural killer T cells: an unconventional T-cell subset with diverse effector and regulatory functions. J Invest Dermatol. 2009;129:1628–42. Epub Mar 5. PMID: 19262602.

    Google Scholar 

  • Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25: 297–336.

    CAS  Google Scholar 

  • Berzins SP, Smyth MJ, Baxter AG. Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol. 2011 Feb;11(2):131–42. PMID: 21267014

    Article  PubMed  CAS  Google Scholar 

  • Berzofsky JA, Terabe M (2009) The contrasting roles of NKT cells in tumor immunity. Curr Mol Med. 2009 Aug;9(6):667–72. PMID: 19689293; PMCID: PMC2729783.

    Google Scholar 

  • Beziat V, Nguyen S, Exley M, Achour A, Simon T, Chevallier P, Sirvent A, Vigouroux S, Debre P, Rio B, Vieillard V; French Minicord Study Group. Shaping of iNKT cell repertoire after unrelated cord blood transplantation. Clin Immunol. 2010 Jun;135(3):364–73. Epub 2010 Feb 13. PMID: 20153980.

    Google Scholar 

  • Bricard G, Cesson V, Devevre E, Bouzourene H, Barbey C, Rufer N, Im JS, Alves PM, Martinet O, Halkic N, Cerottini JC, Romero P, Porcelli SA, Macdonald HR, Speiser DE. Enrichment of human CD4+ V(alpha)24/Vbeta11 invariant NKT cells in intrahepatic malignant tumors. J Immunol. 2009 Apr 15;182(8):5140–51. PubMed PMID: 19342695.

    Article  PubMed  CAS  Google Scholar 

  • Bleicher PA, Balk SP, Hagen SJ, Blumberg RS, Flotte TJ, et al. (1990) Expression of murine CD1 on gastrointestinal epithelium. Science 250: 679–682.

    Article  PubMed  CAS  Google Scholar 

  • Brossay L, Chioda M, Burdin N, Koezuka Y, Casorati G, Dellabona P, Kronenberg M. (1998a). CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med. 188, 1521–1528.

    Article  PubMed  CAS  Google Scholar 

  • Cerundolo V, Silk JD, Masri SH, Salio M. Harnessing invariant NKT cells in vaccination strategies. Nat Rev Immunol. 2009 Jan;9(1):28–38. PMID: 19079136.

    Article  PubMed  CAS  Google Scholar 

  • Chang DH, Osman K, Connolly J, Kukreja A, Krasovsky J, Pack M, Hutchinson A, Geller M, Liu N, Annable R, Shay J, Kirchhoff K, Nishi N, Ando Y, Hayashi K, Hassoun H, Steinman RM, and Dhodapkar MV (2005). Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med. 201, 1503–1517.

    Article  PubMed  CAS  Google Scholar 

  • Chang DH, Deng H, Matthews P, Krasovsky J, Ragupathi G, Spisek R, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV. Inflammation-associated lysophospholipids as ligands for CD1d-restricted T cells in human cancer. Blood. 2008 Aug 15;112(4):1308–16. Epub 2008 Jun 5. PMID: 18535199; PMCID: PMC2515141.

    Google Scholar 

  • Chang WS, Kim JY, Kim YJ, Kim YS, Lee JM, et al. (2008b) Cutting edge: Programmed death-1/programmed death ligand 1 interaction regulates the induction and maintenance of invariant NKT cell anergy. J Immunol 181: 6707–6710.

    CAS  Google Scholar 

  • Cohen NR, Garg S, Brenner MB. Antigen Presentation by CD1 Lipids, T Cells, and NKT Cells in Microbial Immunity. Adv Immunol. 2009;102:1–94. PMID: 19477319.

    Article  PubMed  CAS  Google Scholar 

  • Crough T, Purdie DM, Okai M, Maksoud A, Nieda M, Nicol AJ. Modulation of human Valpha24(+)Vbeta11(+) NKT cells by age, malignancy and conventional anticancer therapies. Br J Cancer. 2004 Nov 29;91(11):1880–6. PMID: 15520823

    Article  PubMed  CAS  Google Scholar 

  • Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson Sc.(2007). Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 204:1257–1265.

    Article  PubMed  CAS  Google Scholar 

  • de Lalla C, Rinaldi A, Montagna D, Azzimonti L, Bernardo ME, Sangalli LM, Paganoni AM, Maccario R, Di Cesare-Merlone A, Zecca M, Locatelli F, Dellabona P, Casorati G. Invariant NKT Cell Reconstitution in Pediatric Leukemia Patients Given HLA-Haploidentical Stem Cell Transplantation Defines Distinct CD4+ and CD4- Subset Dynamics and Correlates with Remission State. J Immunol. 2011 Feb 25. [Epub] PMID: 21357532

    Google Scholar 

  • de Lalla C, Galli G, Aldrighetti L, Romeo R, Mariani M, Monno A, Nuti S, Colombo M, Callea F, Porcelli SA, Panina-Bordignon P, Abrignani S, Casorati G, Dellabona P. 2004 Production of pro-fibrotic cytokines by invariant NKT cells characterizes cirrhosis progression in chronic viral hepatitis. J Immunol. 173:1417–1425.

    Google Scholar 

  • Dhodapkar MV, Geller MD, Chang DH, Shimizu K, Fujii S, Dhodapkar KM, and Krasovsky J. (2003). A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med. 197, 1667–1676.

    Article  PubMed  CAS  Google Scholar 

  • Dhodapkar KM, Cirignano B, Chamian F, Zagzag D, Miller DC, Finlay JL, Steinman RM (2004) Invariant natural killer T cells are preserved in patients with glioma and exhibit antitumor lytic activity following dendritic cell-mediated expansion. Int J Cancer. 2004 May 10;109(6):893–9. PMID: 15027123

    Article  PubMed  CAS  Google Scholar 

  • Dhodapkar MV, Richter J (2011) Harnessing natural killer T (NKT) cells in human myeloma: Progress and challenges. Clin Immunol. 2011 Jan 11. [Epub ahead of print] PMID: 21233022.

    Google Scholar 

  • Diana J, Lehuen A. NKT cells: friend or foe during viral infections? Eur J Immunol. 2009 Dec;39(12):3283–91. PMID: 19830742.

    Article  PubMed  CAS  Google Scholar 

  • Durante-Mangoni, R. Wang, A. Shaulov, Q. He,. Nasser, N. Afdhal, MJ. Koziel, & M. Exley (2004) Hepatic CD1d Expression in Hepatitis C Virus Infection and Recognition by Resident Pro-inflammatory CD1d-reactive T cells. J Immunol.173; 2159–66.

    Google Scholar 

  • Exley M, Garcia J, Balk SP, Porcelli S. Requirements for CD1d recognition by human invariant Valpha24+ CD4-CD8- T cells. J Exp Med. 1997;186:109–120.

    Article  PubMed  CAS  Google Scholar 

  • Exley M, Porcelli S, Furman M, Garcia J, Balk S. CD161 (NKR-P1A) costimulation of CD1d-dependent activation of human T cells expressing invariant V alpha 24 J alpha Q T cell receptor alpha chains. J Exp Med. 1998;188:867–876.

    Article  PubMed  CAS  Google Scholar 

  • Exley M, Garcia J, Wilson SB, Spada F, Gerdes D, Tahir SM, Patton KT, Blumberg RS, Porcelli S, Chott A, Balk SP. CD1d structure and regulation on human thymocytes, peripheral blood T cells, B cells and monocytes. Immunology. 2000;100:37–47.

    Article  PubMed  CAS  Google Scholar 

  • Exley MA, He Q, Cheng O, Wang RJ, Cheney CP, Balk SP, and Koziel MJ. (2002). Cutting edge: Compartmentalization of Th1-like noninvariant CD1d- reactive T cells in hepatitis C virus-infected liver. J Immunol. 168, 1519–1523.

    PubMed  CAS  Google Scholar 

  • Exley M & M. Koziel To be or not to be: NKT cells in the liver. (2004) Hepatology; 40:1033–40.

    Google Scholar 

  • Exley MA, Hou R, Shaulov A, Tonti E, Dellabona P, Casorati G, Akbari O, Akman Ho, Greenfield Ea, Gumperz JE, Boyson JE, Balk SP, Wilson SB.(2008) Selective activation, expansion, and monitoring of human iNKT cells with a mAb specific for the TCR α-chain CDR3 loop Eur J Immunol. 20:1756– 1756.

    Google Scholar 

  • Exley M, Lynch L, Varghese B, Balk S. Developing Understanding of the Roles of ‘NKT’ cells in Cancer: Reversing Tumor-induced Defects, Clin Immunol. 2011 May 13. [Epub] PMID: 21646050.

    Google Scholar 

  • Fais F, Tenca C, Cimino G, Coletti V, Zanardi S, Bagnara D, Saverino D, Zarcone D, De Rossi G, Ciccone E, Grossi CE. CD1d expression on B-precursor acute lymphoblastic leukemia subsets with poor prognosis. Leukemia. 2005 Apr;19(4):551–6. PMID: 15744356.

    PubMed  CAS  Google Scholar 

  • Faunce DE, Palmer JL, Paskowicz KK, Witte PL, Kovacs EJ. CD1d-restricted NKT cells contribute to the age-associated decline of T cell immunity. J Immunol 2005;175:3102–3109.

    PubMed  CAS  Google Scholar 

  • Fujii S, Shimizu K, Klimek V, Geller MD, Nimer SD, Dhodapkar MV. Severe and selective deficiency of interferon-gamma-producing invariant natural killer T cells in patients with myelodysplastic syndromes. Br J Haematol. 2003a Aug;122(4):617–22. PMID: 12899717.

    Article  PubMed  Google Scholar 

  • Fujii S, Shimizu K, Smith C, Bonifaz L, and Steinman RM. 2003b. Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp. Med. 198, 267–279.

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Shimizu K, Hemmi H, Steinman RM. Innate Valpha14(+) natural killer T cells mature dendritic cells, leading to strong adaptive immunity. Immunol Rev. 2007 Dec;220:183–98. PMID: 17979847.

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich D. (2004). Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol. 4, 941–952.

    Article  PubMed  CAS  Google Scholar 

  • Galli G, Pittoni P, Tonti E, Malzone C, Uematsu Y, Tortoli M, Maione D, Volpini G, Finco O, Nuti S, Tavarini S, Dellabona P, Rappuoli R, Casorati G, Abrignani S. Invariant NKT cells sustain specific B cell responses and memory. Proc Natl Acad Sci USA. 2007 Mar 6;104(10):3984–9. Epub 2007 Feb 27. PMID: 17360464.

    Google Scholar 

  • Giaccone G, Punt CJ, Ando Y, Ruijter R, Nishi N, Peters M, von Blomberg BM, Scheper RJ, van der Vliet HJ, van den Eertwegh AJ, Roelvink M, Beijnen J, Zwierzina H, and Pinedo HM. (2002). A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin. Cancer Res. 8, 3702–3709.

    PubMed  CAS  Google Scholar 

  • Gillessen S, Naumov YN, Nieuwenhuis EE, Exley MA, Lee FS, Mach N, Luster AD, Blumberg RS, Taniguchi M, Balk SP, Strominger JL, Dranoff G, and Wilson SB. (2003). CD1d-restricted T cells regulate dendritic cell function and antitumor immunity in a granulocyte-macrophage colony-stimulating factor-dependent fashion. Proc. Natl. Acad. Sci. USA 100, 8874–8879.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey DI. and Kronenberg M. (2004). Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest. 114, 1379–1388.

    PubMed  CAS  Google Scholar 

  • Godfrey DI, McConville MJ, Pellicci DG. Chewing the fat on natural killer T cell development. J Exp Med. 2006 Oct 2;203(10):2229–32. Epub 2006 Sep 25. PMID: 17000869; PMCID: PMC2118098.

    Google Scholar 

  • Gumperz JE, Miyake S, Yamamura T, and Brenner MB. (2002). Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med. 195, 625–636.

    Article  PubMed  CAS  Google Scholar 

  • Hafner M, Zawatzky R, Hirtreiter C, Buurman WA, Echtenacher B, Hehlgans T, Monnel DN. Antimetastatic effect of CpG DNA mediated by type I IFN. Cancer Res. 2001 Jul 15;61(14):5523–8. PMID: 11454702.

    PubMed  CAS  Google Scholar 

  • Hayakawa Y, Takeda K, Yagita H, Van Kaer L, Saiki I, and Okumura K. (2001). Differential regulation of Th1 and Th2 functions of NKT cells by CD28 and CD40 costimulatory pathways. J Immunol. 166, 6012–6018.

    PubMed  CAS  Google Scholar 

  • Hegde S, Fox L, Wang X, Gumperz JE. Autoreactive natural killer T cells:promoting immune protection and immune tolerance through varied interactions with myeloid antigen-presenting cells. Immunology. 2010 Aug;130(4):471–83. Epub 2010 May 11. PMID: 20465577; PMCID: PMC2913258.

    Google Scholar 

  • Hermans IF, Silk JD, Gileadi U, Salio M, Mathew B, Ritter G, Schmidt R, Harris AL, Old L, and Cerundolo V. (2003). NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol. 171, 5140–5147.

    PubMed  CAS  Google Scholar 

  • Ishikawa A, Motohashi S, Ishikawa E, Fuchida H, Higashino K, Otsuji M, Iizasa T, Nakayama T, Taniguchi M, and Fujisawa T. (2005). A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res. 11, 1910–1917.

    Article  PubMed  CAS  Google Scholar 

  • Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Sato H, Kondo E, Harada M, Koseki H, Nakayama T, Tanaka Y, Taniguchi M. Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Valpha14 NKT cells. Proc Natl Acad Sci USA. 1998 May 12;95(10):5690–3.PMID: 9576945

    Article  PubMed  CAS  Google Scholar 

  • Kawano T, Nakayama T, Kamada N, Kaneko Y, Harada M, Ogura N, Akutsu Y, Motohashi S, Iizasa T, Endo H, Fujisawa T, Shinkai H, Taniguchi M. Antitumor cytotoxicity mediated by ligand-activated human V alpha24 NKT cells. Cancer Res. 1999 Oct 15;59(20):5102–5. PMID: 10537282

    PubMed  CAS  Google Scholar 

  • Kenna T, Golden-Mason L, Porcelli SA, Koezuka Y, Hegarty JE, O’Farrelly C, Doherty DG. NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol. 2003 Aug 15;171(4):1775–1779.

    PubMed  CAS  Google Scholar 

  • Kenna T, O’Brien M, Hogan AE, Exley MA, Porcelli SA, Hegarty JE, O’Farrelly C, Doherty DG. CD1 expression and CD1-restricted T cell activity in normal and tumour-bearing human liver. Cancer Immunol Immunother. 2007 Apr;56(4):563–72. Epub 2006 Aug 22. PMID: 16924493.

    Google Scholar 

  • Kitamura H, Iwakabe K, Yahata T, Nishimura S, Ohta A, Ohmi Y, Sato M, Takeda K, Okumura K, Van Kaer L, Kawano T, Taniguchi M, and Nishimura T. (1999). The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)- 12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med. 189, 1121–1128.

    Article  PubMed  CAS  Google Scholar 

  • Kohrt HE, Turnbull BB, Heydari K, Shizuru JA, Laport GG, Miklos DB, Johnston LJ, Arai S, Weng WK, Hoppe RT, Lavori PW, Blume KG, Negrin RS, Strober S, Lowsky R. TLI and ATG conditioning with low risk of graft-versus-host disease retains antitumor reactions after allogeneic hematopoietic cell transplantation from related and unrelated donors. Blood. 2009 Jul 30;114(5):1099–109. Epub 2009 May 7. PMID: 19423725; PMCID: PMC2721787.

    Google Scholar 

  • Kohrt HE, Pillai AB, Lowsky R, Strober S. NKT cells, Treg, and their interactions in bone marrow transplantation. Eur J Immunol. 2010 Jul;40(7):1862–9. PMID: 20583031; PMCID: PMC2926162.

    Google Scholar 

  • Konishi J, Yamazaki K, Yokouchi H, Shinagawa N, Iwabuchi K, Nishimura M. The characteristics of human NKT cells in lung cancer--CD1d independent cytotoxicity against lung cancer cells by NKT cells and decreased human NKT cell response in lung cancer patients. Hum Immunol. 2004 Nov;65(11):1377–88. PMID: 15556688.

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg, M. (2005). Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol. 23, 877–900.

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg M, Kinjo Y (2009) Innate-like recognition of microbes by invariant natural killer T cells.  Curr Opin Immunol. Aug; 21(4):391–6. Epub 2009 Jul 29. PMID: 19646850

    Google Scholar 

  • Kuns RD, Morris ES, Macdonald KP, Markey KA, Morris HM, Raffelt NC, Banovic T, Don AL, Rowe V, Burman AC, Clouston AD, Farah C, Besra GS, Illarionov PA, Smyth MJ, Porcelli SA, Hill GR. Invariant natural killer T cell-natural killer cell interactions dictate transplantation outcome after alpha-galactosylceramide administration. Blood. 2009 Jun 4;113(23):5999–6010. Epub 2009 Apr 15. PMID: 19369232; PMCID: PMC2700331.

    Google Scholar 

  • Lappas CM, YJ, Day MA, Marshall VH, Engelhard and J, Linden 2006. Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J Exp Med. 203:2639–2648.

    Article  PubMed  CAS  Google Scholar 

  • Lan F, Zeng D, Higuchi M, Higgins JP, Strober S. Host conditioning with total lymphoid irradiation and antithymocyte globulin prevents graft-versus-host disease: the role of CD1-reactive natural killer T cells. Biol Blood Marrow Transplant. 2003 Jun;9(6):355–63. PMID: 12813443.

    Article  PubMed  Google Scholar 

  • Lang ML (2009) How do natural killer T cells help B cells? Expert Rev Vaccines. Aug;8(8):1109–21. PMID: 19627191; PMCID: PMC2747240.

    Google Scholar 

  • Lee PT, Benlagha K, Teyton L, and Bendelac A. (2002). Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med. 195, 637–641.

    Article  PubMed  CAS  Google Scholar 

  • Lowsky R, Takahashi T, Liu YP, Dejbakhsh-Jones S, Grumet FC, Shizuru JA, Laport GG, Stockerl-Goldstein KE, Johnston LJ, Hoppe RT, Bloch DA, Blume KG, Negrin RS, Strober S. Protective conditioning for acute graft-versus-host disease. N Engl J Med. 2005 Sep 29;353(13):1321–31. PMID: 16192477.

    Article  PubMed  CAS  Google Scholar 

  • Lynch L, O’Shea D, Winter DC, Geoghegan J, Doherty DG, O’Farrelly C. Invariant NKT cells and CD1d+ cells amass in human omentum and are depleted in patients with cancer and obesity. Eur J Immunol. 2009 Jul;39(7):1893–1901. PMID: 19585513.

    Article  PubMed  CAS  Google Scholar 

  • Mandal M, Chen XR, Alegre ML, Chiu NM, Chen YH, et al. (1998) Tissue distribution, regulation and intracellular localization of murine CD1 molecules. Mol Immunol 35: 525–536.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda JL, Mallevaey T, Scott-Browne J, Gapin L (2008) CD1d-restricted iNKT cells, the “Swiss-Army knife” of the immune system. Curr Opin Immunol 20: 358–368.

    CAS  Google Scholar 

  • Matsuda JL, Gapin L, Baron JL, Sidobre S, Stetson DB, Mohrs M, Locksley RM, Kronenberg M. Mouse V alpha 14i natural killer T cells are resistant to cytokine polarization in vivo. Proc Natl Acad Sci. USA. 2003 Jul 8;100(14):8395–8400. Epub 2003 Jun 26. PubMed PMId: 12829795; PubMed Central PMCID: PMC166240.

    Article  PubMed  CAS  Google Scholar 

  • Mehta AS, Gu B, Conyers B, Ouzounov S, Wang L, Moriarty RM, Dwek RA, Block TM. alpha-Galactosylceramide and novel synthetic glycolipids directly induce the innate host defense pathway and have direct activity against hepatitis B and C viruses. Antimicrob Agents Chemother. 2004;48:2085–90. PMID: 15155204; PMCID: PMC415597.

    Google Scholar 

  • Metelitsa LS, OV, Naidenko A, Kant HW, Wu MJ, Loza, B, Perussia, et al, Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol. 2001;167:3114–3122.

    PubMed  CAS  Google Scholar 

  • Metelitsa LS, Weinberg KI, Emanuel PD, Seeger RC. Expression of CD1d by myelomonocytic leukemias provides a target for cytotoxic NKT cells. Leukemia. 2003 Jun;17(6):1068–1077. PMID: 12764370.

    Article  PubMed  CAS  Google Scholar 

  • Metelitsa LS, Wu HW, Wang H, Yang Y, Warsi Z, et al. (2004) Natural killer T cells infiltrate neuroblastomas expressing the chemokine CCL2. J Exp Med 199:1213–1221.

    Article  CAS  Google Scholar 

  • Metelitsa LS, Anti-tumor potential of type-I NKT cells against CD1d-positive and CD1d-negative tumors in humans. Clin Immunol 2011. [Epub ahead of print] PubMed PMID: 21095162.

    Google Scholar 

  • Molling JW, Kolgen W, van der Vliet HJ, Boomsma MF, Kruizenga H, Smorenburg CH, Molenkamp BG, Langendijk JA, Leemans CR, von Blomberg BM, Scheper RJ, and van den Eertwegh AJ. (2005). Peripheral blood IFN-gamma-secreting Valpha24  +  Vbeta11+ NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int J Cancer. 116, 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Molling JW, Langius JA, Langendijk JA, Leemans CR, Bontkes HJ, van der Vliet HJ, von Blomberg BM, Scheper RJ, van den Eertwegh AJ. Low levels of circulating invariant natural killer T cells predict poor clinical outcome in patients with head and neck squamous cell carcinoma. J Clin Oncol. 2007 Mar 1;25(7):862–868. PMID: 17327607

    Article  PubMed  Google Scholar 

  • Montoya CJ, Jie HB, Al-Harthi L, Mulder C, Patino PJ, Rugeles MT, Krieg AM, Landay AL, Wilson SB. Activation of plasmacytoid dendritic cells with TLR9 agonists initiates invariant NKT cell-mediated cross-talk with myeloid dendritic cells. J Immunol. 2006 Jul 15;177(2):1028–39. PMID: 16818759.

    PubMed  CAS  Google Scholar 

  • Morris ES, MacDonald KP, Rowe V, Banovic T, Kuns RD, Don AL, Bofinger HM, Burman AC, Olver SD, Kienzle N, Porcelli SA, Pellicci DG, Godfrey DI, Smyth MJ, Hill GR. NKT cell-dependent leukemia eradication following stem cell mobilization with potent G-CSF analogs. J Clin Invest. 2005 Nov;115(11):3093–3103. Epub 2005 Oct 13. PMID: 16224535; PMCID: PMC1253626.

    Google Scholar 

  • Morris ES, MacDonald KP, Kuns RD, Morris HM, Banovic T, Don AL, Rowe V, Wilson YA, Raffelt NC, Engwerda CR, Burman AC, Markey KA, Godfrey DI, Smyth MJ, Hill GR. Induction of natural killer T cell-dependent alloreactivity by administration of granulocyte colony-stimulating factor after bone marrow transplantation. Nat Med. 2009 Apr;15(4):436–441. Epub 2009 Mar 29. PMID: 19330008.

    Google Scholar 

  • Motohashi S, Kobayashi S, Ito T, Magara KK, Mikuni O, Kamada N, Iizasa T, Nakayama T, Fujisawa T, Taniguchi M. Preserved IFN-alpha (gamma) production of circulating Valpha24 NKT cells in primary lung cancer patients. Int J Cancer. 2002 Nov 10;102(2):159–165. Erratum in: Int J Cancer. 2003 May 10;104(6):799. PMID: 12385012.

    CAS  Google Scholar 

  • Motohashi S, Ishikawa A, Ishikawa E, Otsuji M, Iizasa T, Hanaoka H, Shimizu N, Horiguchi S, Okamoto Y, Fujii S, Taniguchi M, Fujisawa T, and Nakayama T, (2006). A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res. 12, 6079–6086.

    Article  PubMed  CAS  Google Scholar 

  • Motohashi S, Okamoto Y, Yoshino I, Nakayama T. Anti-tumor immune responses induced by iNKT cell-based immunotherapy for lung cancer and head and neck cancer. Clin Immunol. 2011 Jan 27. [Epub ahead of print] PMID: 21349771.

    Google Scholar 

  • Nebozhyn M, Loboda A, Kari L, Rook AH, Vonderheid EC, Lessin S, Berger C, Edelson R, Nichols C, Yousef M, Gudipati L, Shang M, Showe MK, Showe LC. Quantitative PCR on 5 genes reliably identifies CTCL patients with 5% to 99% circulating tumor cells with 90% accuracy. Blood. 2006 Apr 15;107(8):3189–96. Epub 2006 Jan 10. PMID: 16403914

    Google Scholar 

  • Nicol A, Nieda M, Koezuka Y, Porcelli S, Suzuki K, Tadokoro K, Durrant S, Juji T. Human invariant valpha24+ natural killer T cells activated by alpha-galactosylceramide (KRN7000) have cytotoxic anti-tumour activity through mechanisms distinct from T cells and natural killer cells. Immunology. 2000 Feb;99(2):229–234. PMID: 10692041; PMCID: PMC2327139.

    Google Scholar 

  • Nieda,M., Okai,M., Tazbirkova,A., Lin,H., Yamaura,A., Ide,K., Abraham,R., Juji,T., Macfarlane,D.J., and Nicol,A.J. (2004). Therapeutic activation of Valpha24  +  Vbeta11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103, 383–389.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuis EE, Gillessen S, Scheper RJ, Exley MA, Taniguchi M, Balk SP, Strominger JL, Dranoff G, Blumberg RS, & Wilson SB. (2005) CD1d and CD1d-restricted iNKT-cells play a pivotal role in contact hypersensitivity. Exp. Dermatol. 14:250–258.

    Article  PubMed  Google Scholar 

  • Nowak M, Arredouani MS, Tun-Kyi A, Schmidt-Wolf I, Sanda MG, Balk SP, Exley MA. Defective NKT cell activation by CD1d  +  TRAMP prostate tumor cells is corrected by interleukin-12 with alpha-galactosylceramide. PLoS One. 2010a Jun 25;5(6):e11311. PMID: 20593019; PMCID: PMC2892484.

    Google Scholar 

  • Nowak M, Lynch L, Yue S, Ohta A, Sitkovsky M, Balk S, Exley MA. (2010b) The A2aR adenosine receptor controls cytokine production in iNKT cells. Eur. J. Immunol. 40:682–7. e-Pub. Dec. 28. PMID: 20039304.

    Google Scholar 

  • O’Konek JJ, Illarionov P, Khursigara DS, Ambrosino E, Izhak L, Castillo BF 2nd, Raju R, Khalili M, Kim HY, Howell AR, Besra GS, Porcelli SA, Berzofsky JA, Terabe M. Mouse and human iNKT cell agonist β-mannosylceramide reveals a distinct mechanism of tumor immunity. J Clin Invest. 2011 Feb 1;121(2):683–94. doi: 10.1172/JCI42314. Epub 2011 Jan 18. PMID: 21245578

    Article  CAS  Google Scholar 

  • Padte NN, Li X, Tsuji M, Vasan S. Clinical development of a novel CD1d-binding NKT cell ligand as a vaccine adjuvant. Clin Immunol. 2010 Dec 24. [Epub ahead of print] PMID: 21185784.

    Google Scholar 

  • Paget C, Mallevaey T, Speak AO, Torres D, Fontaine J, Sheehan KC, Capron M, Ryffel B, Faveeuw C, Leite de Moraes M, Platt F, Trottein F. Activation of invariant NKT cells by toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity. 2007 Oct;27(4):597–609. Epub 2007 Oct 18. PMID: 17950005

    Google Scholar 

  • Paget C, Bialecki E, Fontaine J, Vendeville C, Mallevaey T, Faveeuw C, Trottein F. Role of invariant NK T lymphocytes in immune responses to CpG oligodeoxynucleotides. J Immunol. 2009 Feb 15;182(4):1846–1853. PMID: 19201836.

    Article  PubMed  CAS  Google Scholar 

  • Park JM, Terabe M, Donaldson DD, Forni G, Berzofsky JA. Natural immunosurveillance against spontaneous, autochthonous breast cancers revealed and enhanced by blockade of IL-13-mediated negative regulation. Cancer Immunol Immunother. 2008 Jun;57(6):907–912. Epub 2007 Nov 15. PMID: 18004566.

    Google Scholar 

  • Parekh VV, Wilson MT, Van Kaer L (2005) iNKT-cell responses to glycolipids. CritRevImmunol 25: 183–213.

    CAS  Google Scholar 

  • Parekh VV, Lalani S, Kim S, Halder R, Azuma M, et al. (2009) PD-1/PD-L blockade prevents anergy induction and enhances the anti-tumor activities of glycolipid-activated invariant NKT cells. J Immunol 182: 2816–2826.

    Article  CAS  Google Scholar 

  • Pillai AB, George TI, Dutt S, Teo P, Strober S. Host NKT cells can prevent graft-versus-host disease and permit graft antitumor activity after bone marrow transplantation. J Immunol. 2007 May 15;178(10):6242–6251. PMID: 17475852.

    PubMed  CAS  Google Scholar 

  • Popov Y, Patsenker E, Fickert P, Trauner M, Schuppan D. Mdr2 (Abcb4)−/− mice spontaneously develop severe biliary fibrosis via massive dysregulation of pro-and antifibrogenic genes. J Hepatol. 2005 Dec;43(6):1045–54. Epub 2005 Aug 15. PubMed PMID: 16223543.

    Google Scholar 

  • Reddy M, Wong J, Davis C, Prabhakar U (2005) Co-expression of IL-12 receptors along with CXCR3 and CD25 on activated peripheral blood T lymphocytes. CellImmunol 236: 123–130.

    Article  PubMed  CAS  Google Scholar 

  • Reilly EC, Wands JR, Brossay L. Cytokine dependent and independent iNKT cell activation. Cytokine. 2010 Sep;51(3):227–231. PMID: 20554220; PMCID: PMC2914806.

    Google Scholar 

  • Renukaradhya GJ, Khan MA, Vieira M, Du W, Gervay-Hague J, Brutkiewicz RR. Type I NKT cells protect (and type II NKT cells suppress) the host’s innate antitumor immune response to a B-cell lymphoma. Blood. 2008;111:5637–5645. Epub 2008 Apr 16. PMID: 18417738; PMCID: PMC2424159.

    Google Scholar 

  • Roark JH, Park SH, Jayawardena J, Kavita U, Shannon M, et al. (1998) CD1.1 expression by mouse antigen-presenting cells and marginal zone B cells. JImmunol 160: 3121–3127.

    CAS  Google Scholar 

  • Saito TI, Li HW, Sykes M. Invariant NKT cells are required for antitumor responses induced by host-versus-graft responses. J Immunol. 2010 Aug 15;185(4):2099–2105. Epub 2010 Jul 14. PMID: 20631307.

    Google Scholar 

  • Salio M, Silk JD, Cerundolo V. Recent advances in processing and presentation of CD1 bound lipid antigens. Curr Opin Immunol. 2010 Feb;22(1):81–88. Epub 2010 Jan 14. PMID: 20080041.

    Google Scholar 

  • Schneiders FL, Scheper RJ, von Blomberg BM, Woltman AM, Janssen HL, van den Eertwegh AJ, Verheul HM, de Gruijl TD, van der Vliet HJ. Clinical experience with a-galactosylceramide (KRN7000) in patients with advanced cancer and chronic hepatitis B/C infection. Clin Immunol. 2010 Dec 17. [Epub ahead of print] PubMed PMID: 21169066.

    Google Scholar 

  • Sfondrini L, Besusso D, Zoia MT, Rodolfo M, Invernizzi AM, Taniguchi M, Nakayama T, Colombo MP, Monard S, Balsari A. Absence of the CD1 molecule up-regulates antitumor activity induced by CpG oligodeoxynucleotides in mice. J Immunol. 2002 Jul 1;169(1):151–158. PMID: 12077240.

    PubMed  CAS  Google Scholar 

  • Swann JB, Coquet JM, Smyth MJ, Godfrey DI. CD1-restricted T cells and tumor immunity. Curr Top Microbiol Immunol. 2007;314:293–323. PMID: 17593666.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M, Tashiro T, Dashtsoodol N, Hongo N, Watarai H. The specialized iNKT cell system recognizes glycolipid antigens and bridges the innate and acquired immune systems with potential applications for cancer therapy. Int Immunol. 2010 Jan;22(1):1–6. Epub 2009 Oct 25. PMID: 19858073.

    Google Scholar 

  • Tahir SM, Cheng O, Shaulov A, Koezuka Y, Bubley GJ, Wilson SB, Balk SP, and Exley MA, (2001). Loss of IFN-gamma production by invariant NK T cells in advanced cancer. J. Immunol. 167, 4046–4050.

    PubMed  CAS  Google Scholar 

  • Teng MW, Yue S, Sharkey J, Exley MA, Smyth MJ. CD1d activation and blockade: a new antitumor strategy. J Immunol. (2009a);182:3366–3371. PMID: 19265113. PMCID: PMC2967458.

    PubMed  CAS  Google Scholar 

  • Teng MW, Sharkey J, McLaughlin NM, Exley MA, Smyth MJ. CD1d-based combination therapy eradicates established tumors in mice. J Immunol. (2009b);183:1911–1920. PMID: 19620318. PMCID: PMC2967455.

    PubMed  CAS  Google Scholar 

  • Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD, Chen W, Wahl SM, Ledbetter S, Pratt B, Letterio JJ, Paul WE, and Berzofsky JA, (2003). Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med. 198, 1741–1752.

    Article  PubMed  CAS  Google Scholar 

  • Terabe M, Swann J, Ambrosino E, Sinha P, Takaku S, Hayakawa Y, Godfrey DI, Ostrand-Rosenberg S, Smyth MJ, and Berzofsky JA, (2005). A nonclassical non-Valpha14Jalpha18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med. 202, 1627–1633. PMID: 16365146; PMCID: PMC2212961.

    Google Scholar 

  • Terabe M, Khanna C, Bose S, Melchionda F, Mendoza A, Mackall CL, Helman LJ, Berzofsky JA. CD1d-restricted natural killer T cells can down-regulate tumor immunosurveillance independent of interleukin-4 receptor-signal transducer and activator of transcription 6 or transforming growth factor-beta. Cancer Res. 2006 Apr 1;66(7):3869–75. PMID: 16585215.

    Article  PubMed  CAS  Google Scholar 

  • Tessmer MS, Fatima A, Paget C, Trottein F, Brossay L. NKT cell immune responses to viral infection. Expert Opin Ther Targets. 2009 Feb;13(2):153–162. PMID: 19236234; PMCID: PMC2921843.

    Google Scholar 

  • Tomura M, Yu WG, Ahn HJ, Yamashita M, Yang YF, Ono S, Hamaoka T, Kawano T, Taniguchi M, Koezuka Y, and Fujiwara H, (1999). A novel function of Valpha14  +  CD4  +  NKT cells: stimulation of IL-12 production by antigen-presenting cells in the innate immune system. J. Immunol. 163, 93–101.

    PubMed  CAS  Google Scholar 

  • van der Vliet HJ, von Blomberg BM, Nishi N, Reijm M, Voskuyl AE, van Bodegraven AA, Polman CH, Rustemeyer T, Lips P, van den Eertwegh AJ, Giaccone G, Scheper RJ, Pinedo HM. Circulating V(alpha24+) Vbeta11+ NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin Immunol. 2001 Aug;100(2):144–148. PMID: 11465942

    Article  PubMed  Google Scholar 

  • van der Vliet HJ, Molling JW, Nishi N, Masterson AJ, Kolgen W, Porcelli SA, van den Eertwegh AJ, von Blomberg BM, Pinedo HM, Giaccone G, Scheper RJ. Polarization of Valpha24+ Vbeta11+ natural killer T cells of healthy volunteers and cancer patients using alpha-galactosylceramide-loaded and environmentally instructed dendritic cells. Cancer Res. 2003 Jul 15;63(14):4101–4106. PMID: 12874013.

    PubMed  Google Scholar 

  • van der Vliet, H.J., H.B. Koon, S.C. Yue, B. Uzunparmak, V. Seery, M.A. Gavin, A.Y. Rudensky, M.B. Atkins, S.P. Balk, & M.A. Exley. Effects of the administration of high-dose IL-2 on immunoregulatory cell subsets in patients with advanced melanoma and renal cell cancer. Clin. Cancer Res. 2007 Apr 1;13(7):2100–2108. PubMed PMID: 17404092.

    Google Scholar 

  • van der Vliet HJ, Wang R, Yue SC, Koon HB, Balk SP, Exley MA.Circulating myeloid dendritic cells of advanced cancer patients result in reduced activation and a biased cytokine profile in invariant NKT cells. J Immunol. 2008 Jun 1;180(11):7287–93. PMID: 18490728

    PubMed  Google Scholar 

  • Venkataswamy MM, Porcelli SA (2010) Lipid and glycolipid antigens of CD1d-restricted natural killer T cells. Semin Immunol Apr;22(2):68–78. Epub 2009 Nov 27. PMID: 19945296; PMCID: PMC2837800.

    Google Scholar 

  • Wu DY, Segal NH, Sidobre S, Kronenberg M, Chapman PB. Cross-presentation of disialoganglioside GD3 to natural killer T cells. J Exp Med. 2003 Jul 7;198(1):173–181. PMID: 12847141

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki K, Horiguchi S, Kurosaki M, Kunii N, Nagato K, Hanaoka H, Shimizu N, Ueno N, Yamamoto S, Taniguchi M, Motohashi S, Nakayama T, Okamoto Y. Induction of NKT cell-specific immune responses in cancer tissues after NKT cell-targeted adoptive immunotherapy. Clin Immunol. 2011 Mar;138(3):255–265. Epub 2010 Dec 24. PMID: 21185787.

    Google Scholar 

  • Yanagisawa K, Seino K, Ishikawa Y, Nozue M, Todoroki T, Fukao K. Impaired proliferative response of V alpha 24 NKT cells from cancer patients against alpha-galactosylceramide. J Immunol. 2002 Jun 15;168(12):6494–6499. PMID: 12055270.

    Google Scholar 

  • Yanagisawa K, Exley MA, Jiang X, Ohkochi N, Taniguchi M, Seino K. Hyporesponsiveness to natural killer T-cell ligand alpha-galactosylceramide in cancer-bearing state mediated by CD11b  +  Gr-1+ cells producing nitric oxide. Cancer Res. 2006 Dec 1;66(23):11441–6. PubMed PMID: 17145891. Sep;30(6):591–5. Review. PubMed PMID: 17667522.

    Google Scholar 

  • Yang W, Li H, Mayhew E, Mellon J, Chen PW, Niederkorn JY. NKT cell exacerbation of liver metastases arising from melanomas transplanted into either the eyes or spleens of mice. Invest Ophthalmol Vis Sci. 2011 Feb 17. Epub PMID: 21330669.

    Google Scholar 

  • Yue SC, Shaulov A, Wang R, Balk SP, and Exley MA, (2005). CD1d ligation on human monocytes directly signals rapid NF-kappaB activation and production of bioactive IL-12. Proc. Natl. Acad. Sci. USA 102, 11811–11816.

    Article  PubMed  CAS  Google Scholar 

  • Zaini J, Andarini S, Tahara M, Saijo Y, Ishii N, Kawakami K, Taniguchi M, Sugamura K, Nukiwa T, Kikuchi T. OX40 ligand expressed by DCs costimulates NKT and CD4+ Th cell antitumor immunity in mice. J Clin Invest. 2007 Nov;117(11):3330–3338. PMID: 17975668

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Venkatapathy S, Rao G, Harrington CA. Expression profiling of B cell chronic lymphocytic leukemia suggests deficient CD1-mediated immunity, polarized cytokine response, altered adhesion and increased intracellular protein transport and processing of leukemic cells. Leukemia. 2002 Dec;16(12):2429–2437. PMID: 12454749.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Exley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Exley, M.A., Lynch, L., Nowak, M. (2012). NKT Cells of Cancer Patients and How Models Can Inform Therapeutic Plans. In: Terabe, M., Berzofsky, J. (eds) Natural Killer T cells. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0613-6_8

Download citation

Publish with us

Policies and ethics