Skip to main content

Therapeutic Approaches Utilising NKT Cells

  • Chapter
  • First Online:
Natural Killer T cells

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Natural killer T (NKT) cells are members of the immune armamentarium with profound immunoregulatory effects. They bridge the innate and adaptive immune systems, filling a niche in recognizing glycolipid antigens, and responding rapidly to prime subsequent immune responses. In cancer, type I NKT cells, defined by their semi-invariant T cell receptor (TCR) using Vα14Jα18 in mice and Vα24Jα18 in humans, are mostly host protective, by producing interferon-γ (IFN-γ) to activate and mature dendritic cells (DC) to make IL-12, which in turn activates NK and CD8+ T cells. In contrast, type II NKT cells, characterized by more diverse TCRs recognizing lipids presented by CD1d, primarily inhibited anti-tumor immunity. This chapter will discuss the impact of CD1d-restricted NKT cells in tumor immune surveillance and immunotherapy and highlight recent therapeutic approaches in tumor mouse models with a focus on harnessing the anti-tumor activities of NKT cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ambrosino, E., Berzofsky, J. A. and Terabe, M. (2008). Regulation of tumor immunity: the role of NKT cells. Expert Opin Biol Ther 8(6): 725–34.

    Article  PubMed  CAS  Google Scholar 

  • Ambrosino, E., Terabe, M., Halder, R. C., et al. (2007). Cross-regulation between type I and type II NKT cells in regulating tumor immunity: a new immunoregulatory axis. J Immunol 179(8): 5126–36.

    PubMed  CAS  Google Scholar 

  • Aymeric, L., Apetoh, L., Ghiringhelli, F., et al. (2010). Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res 70(3): 855–8.

    Article  PubMed  CAS  Google Scholar 

  • Bagnara, D., Ibatici, A., Corselli, M., et al. (2009). Adoptive immunotherapy mediated by ex vivo expanded natural killer T cells against CD1d-expressing lymphoid neoplasms. Haematologica 94(7): 967–75.

    Article  PubMed  CAS  Google Scholar 

  • Barral, P., Eckl-Dorna, J., Harwood, N. E., et al. (2008). B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo. Proc Natl Acad Sci USA 105(24): 8345–50.

    Article  PubMed  CAS  Google Scholar 

  • Bellone, M., Ceccon, M., Grioni, M., et al. (2010). iNKT cells control mouse spontaneous carcinoma independently of tumor-specific cytotoxic T cells. PLoS One 5(1): e8646.

    Article  PubMed  Google Scholar 

  • Berzofsky, J. A. and Terabe, M. (2008). NKT cells in tumor immunity: opposing subsets define a new immunoregulatory axis. J Immunol 180(6): 3627–35.

    PubMed  CAS  Google Scholar 

  • Bezbradica, J. S., Stanic, A. K., Matsuki, N., et al. (2005). Distinct Roles of Dendritic Cells and B Cells in Va14Ja18 Natural T Cell Activation In Vivo. J Immunol 174(8): 4696–705.

    PubMed  CAS  Google Scholar 

  • Burdin, N., Brossay, L. and Kronenberg, M. (1999). Immunization with alpha-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. European Journal of Immunology 29(6): 2014–25.

    Article  PubMed  CAS  Google Scholar 

  • Cabaniols, J. P., Fazilleau, N., Casrouge, A., et al. (2001). Most alpha/beta T cell receptor diversity is due to terminal deoxynucleotidyl transferase. J Exp Med 194(9): 1385–90.

    Article  PubMed  CAS  Google Scholar 

  • Cardell, S., Tangri, S., Chan, S., et al. (1995). CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J Exp Med 182(4): 993–1004.

    Article  PubMed  CAS  Google Scholar 

  • Chang, D. H., Osman, K., Connolly, J., et al. (2005). Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201(9): 1503–17.

    Article  PubMed  CAS  Google Scholar 

  • Chiu, Y. H., Jayawardena, J., Weiss, A., et al. (1999). Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J Exp Med 189(1): 103–10.

    Article  PubMed  CAS  Google Scholar 

  • Chung, Y., Chang, W. S., Kim, S., et al. (2004). NKT cell ligand alpha-galactosylceramide blocks the induction of oral tolerance by triggering dendritic cell maturation. Eur J Immunol 34(9): 2471–9.

    Article  PubMed  CAS  Google Scholar 

  • Chung, Y., Qin, H., Kang, C. Y., et al. (2007). An NKT-mediated autologous vaccine generates CD4 T cell-dependent potent anti-lymphoma immunity. Blood 110(6): 2013–9.

    Article  PubMed  CAS  Google Scholar 

  • Coquet, J. M., Chakravarti, S., Kyparissoudis, K., et al. (2008). Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proc Natl Acad Sci USA 105(32): 11287–92.

    Article  PubMed  CAS  Google Scholar 

  • Crowe, N. Y., Coquet, J. M., Berzins, S. P., et al. (2005). Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 202(9): 1279–88.

    Article  PubMed  CAS  Google Scholar 

  • Crowe, N. Y., Smyth, M. J. and Godfrey, D. I. (2002). A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. Journal of Experimental Medicine 196(1): 119–27.

    Article  PubMed  CAS  Google Scholar 

  • Crowe, N. Y., Uldrich, A. P., Kyparissoudis, K., et al. (2003). Glycolipid Antigen Drives Rapid Expansion and Sustained Cytokine Production by NK T Cells. J Immunol 171(8): 4020–27.

    PubMed  CAS  Google Scholar 

  • Demaria, S., Bhardwaj, N., McBride, W. H., et al. (2005). Combining radiotherapy and immunotherapy: a revived partnership. Int J Radiat Oncol Biol Phys 63(3): 655–66.

    Article  PubMed  Google Scholar 

  • Dhodapkar, M. V., Geller, M. D., Chang, D. H., et al. (2003). A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med 197(12): 1667–76.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, G. P., Bruce, A. T., Ikeda, H., et al. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11): 991–8.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, G. P., Old, L. J. and Schreiber, R. D. (2004). The three Es of cancer immunoediting. Annu Rev Immunol 22: 329–60.

    Article  PubMed  CAS  Google Scholar 

  • Fujii, S., Shimizu, K., Klimek, V., et al. (2003a). Severe and selective deficiency of interferon-gamma-producing invariant natural killer T cells in patients with myelodysplastic syndromes. Br J Haematol 122(4): 617–22.

    Article  PubMed  Google Scholar 

  • Fujii, S., Shimizu, K., Kronenberg, M., et al. (2002). Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nature Immunology 3(9): 867–74.

    Article  PubMed  CAS  Google Scholar 

  • Fujii, S., Shimizu, K., Smith, C., et al. (2003b). Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 198(2): 267–79.

    Article  PubMed  CAS  Google Scholar 

  • Fujii, S., Shimizu, K., Steinman, R. M., et al. (2003c). Detection and activation of human Valpha24+ natural killer T cells using alpha-galactosyl ceramide-pulsed dendritic cells. J Immunol Methods 272(1–2): 147–59.

    Article  PubMed  CAS  Google Scholar 

  • Galli, G., Nuti, S., Tavarini, S., et al. (2003). CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J Exp Med 197(8): 1051–7.

    Article  PubMed  CAS  Google Scholar 

  • Galli, G., Pittoni, P., Tonti, E., et al. (2007). Invariant NKT cells sustain specific B cell responses and memory. Proc Natl Acad Sci USA 104(10): 3984–9.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey, D. I., MacDonald, H. R., Kronenberg, M., et al. (2004). NKT cells: what’s in a name? Nat Rev Immunol 4(3): 231–7.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey, D. I., Stankovic, S. and Baxter, A. G. (2010). Raising the NKT cell family. Nat Immunol 11(3): 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Harada, M., Seino, K., Wakao, H., et al. (2004). Down-regulation of the invariant Valpha14 antigen receptor in NKT cells upon activation. Int Immunol 16(2): 241–7.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa, Y., Godfrey, D. I. and Smyth, M. J. (2004). Alpha-galactosylceramide: potential immunomodulatory activity and future application. Curr Med Chem 11(2): 241–52.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa, Y., Rovero, S., Forni, G., et al. (2003). Alpha-galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis. Proc Natl Acad Sci USA 100(16): 9464–9.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa, Y., Takeda, K., Yagita, H., et al. (2002). IFN-gamma-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide. Blood 100(5): 1728–33.

    PubMed  CAS  Google Scholar 

  • Haynes, N. M., van der Most, R. G., Lake, R. A., et al. (2008). Immunogenic anti-cancer chemotherapy as an emerging concept. Curr Opin Immunol 20(5): 545–57.

    Article  PubMed  CAS  Google Scholar 

  • Hermans, I. F., Silk, J. D., Gileadi, U., et al. (2007). Dendritic Cell Function Can Be Modulated through Cooperative Actions of TLR Ligands and Invariant NKT Cells. J Immunol 178(5): 2721–9.

    PubMed  CAS  Google Scholar 

  • Hermans, I. F., Silk, J. D., Gileadi, U., et al. (2003). NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 171(10): 5140–7.

    PubMed  CAS  Google Scholar 

  • Hong, C., Lee, H., Park, Y. K., et al. (2009). Regulation of secondary antigen-specific CD8(+) T-cell responses by natural killer T cells. Cancer Res 69(10): 4301–8.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, A., Motohashi, S., Ishikawa, E., et al. (2005). A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 11(5): 1910–7.

    Article  PubMed  CAS  Google Scholar 

  • Kamijuku, H., Nagata, Y., Jiang, X., et al. (2008). Mechanism of NKT cell activation by intranasal coadministration of alpha-galactosylceramide, which can induce cross-protection against influenza viruses. Mucosal Immunol 1(3): 208–18.

    Article  PubMed  CAS  Google Scholar 

  • Ko, S. Y., Ko, H. J., Chang, W. S., et al. (2005). {alpha}-Galactosylceramide Can Act As a Nasal Vaccine Adjuvant Inducing Protective Immune Responses against Viral Infection and Tumor. J Immunol 175(5): 3309–17.

    PubMed  CAS  Google Scholar 

  • Kunii, N., Horiguchi, S., Motohashi, S., et al. (2009). Combination therapy of in vitro-expanded natural killer T cells and alpha-galactosylceramide-pulsed antigen-presenting cells in patients with recurrent head and neck carcinoma. Cancer Sci 100(6): 1092–8.

    Article  PubMed  CAS  Google Scholar 

  • Lake, R. A. and Robinson, B. W. (2005). Immunotherapy and chemotherapy--a practical partnership. Nat Rev Cancer 5(5): 397–405.

    Article  PubMed  CAS  Google Scholar 

  • Leadbetter, E. A., Brigl, M., Illarionov, P., et al. (2008). NK T cells provide lipid antigen-specific cognate help for B cells. Proc Natl Acad Sci USA 105(24): 8339–44.

    Article  PubMed  CAS  Google Scholar 

  • Lin, H., Nieda, M. and Nicol, A. J. (2004). Differential proliferative response of NKT cell subpopulations to in vitro stimulation in presence of different cytokines. Eur J Immunol 34(10): 2664.

    Article  PubMed  CAS  Google Scholar 

  • Liu, K., Idoyaga, J., Charalambous, A., et al. (2005). Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells. J Exp Med 202(11): 1507–16.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda, J. L., Mallevaey, T., Scott-Browne, J., et al. (2008). CD1d-restricted iNKT cells, the ‘Swiss-Army knife’ of the immune system. Curr Opin Immunol 20(8): 358–68.

    Article  PubMed  CAS  Google Scholar 

  • Matsui, K., Yoshimoto, T., Tsutsui, H., et al. (1997). Propionibacterium acnes treatment diminishes CD4+ NK1.1+ T cells but induces type I T cells in the liver by induction of IL-12 and IL-18 production from Kupffer cells. J Immunol 159: 97–106.

    Article  PubMed  CAS  Google Scholar 

  • Mattarollo, S. R., Kenna, T., Nieda, M., et al. (2006). Chemotherapy pretreatment sensitizes solid tumor-derived cell lines to Valpha24(+) NKT cell-mediated cytotoxicity. Int J Cancer 119(7): 1630–7.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy, C., Shepherd, D., Fleire, S., et al. (2007). The length of lipids bound to human CD1d molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation. J Exp Med 204(5): 1131–44.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto, K., Miyake, S. and Yamamura, T. (2001). A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing T(H)2 bias of natural killer T cells. Nature 413(6855): 531–34.

    Article  PubMed  CAS  Google Scholar 

  • Molling, J. W., Langius, J. A., Langendijk, J. A., et al. (2007). Low levels of circulating invariant natural killer T cells predict poor clinical outcome in patients with head and neck squamous cell carcinoma. J Clin Oncol 25(7): 862–8.

    Article  PubMed  Google Scholar 

  • Molling, J. W., Moreno, M., de Groot, J., et al. (2008). Chronically stimulated mouse invariant NKT cell lines have a preserved capacity to enhance protection against experimental tumor metastases. Immunol Lett 118(1): 36–43.

    Article  PubMed  CAS  Google Scholar 

  • Moodycliffe, A. M., Nghiem, D., Clydesdale, G., et al. (2000). Immune suppression and skin cancer development: regulation by NKT cells. Nat Immunol 1(6): 521–5.

    Article  PubMed  CAS  Google Scholar 

  • Motohashi, S., Ishikawa, A., Ishikawa, E., et al. (2006). A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 12(20 Pt 1): 6079–86.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, R., Motoki, K., Nakamura, H., et al. (1998a). Antitumor activity of alpha-­galactosylceramide, KRN7000, in mice with EL-4 hepatic metastasis and its cytokine production. Oncology Research 10(11–12): 561–68.

    PubMed  CAS  Google Scholar 

  • Nakagawa, R., Motoki, K., Ueno, H., et al. (1998b). Treatment of hepatic metastasis of the colon26 adenocarcinoma with an alpha-galactosylceramide, KRN7000. Cancer Res 58(6): 1202–7.

    PubMed  CAS  Google Scholar 

  • Nieda, M., Okai, M., Tazbirkova, A., et al. (2004). Therapeutic activation of V{alpha}24  +  V{beta}11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103(2): 383–89.

    Article  PubMed  CAS  Google Scholar 

  • Nishi, N., van der Vliet, H. J. J., Koezuka, Y., et al. (2000). Synergistic effect of KRN7000 with interleukin-15,-7, and-2 on the expansion of human V alpha 24(+)V beta 11(+) T cells in vitro. Human Immunology 61(4): 357–65.

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa, H., Kato, T., Tanida, K., et al. (2003). CD4+ CD25+ T cells responding to serologically defined autoantigens suppress antitumor immune responses. Proc Natl Acad Sci USA 100(19): 10902–6.

    Article  PubMed  CAS  Google Scholar 

  • Parekh, V. V., Wilson, M. T., Olivares-Villagomez, D., et al. (2005). Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 115(9): 2572–83.

    Article  PubMed  CAS  Google Scholar 

  • Park, J. M., Terabe, M., Donaldson, D. D., et al. (2008). Natural immunosurveillance against spontaneous, autochthonous breast cancers revealed and enhanced by blockade of IL-13-mediated negative regulation. Cancer Immunol Immunother 57(6): 907–12.

    Article  PubMed  CAS  Google Scholar 

  • Park, S. H., Weiss, A., Benlagha, K., et al. (2001). The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J Exp Med 193(8): 893–904.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, T. R., Sika-Paotonu, D., Knight, D. A., et al. (2010). Potent anti-tumor responses to immunization with dendritic cells loaded with tumor tissue and an NKT cell ligand. Immunol Cell Biol doi:10.1038/icb.2010.9.

  • Renukaradhya, G. J., Khan, M. A., Vieira, M., et al. (2008). Type I NKT cells protect (and Type II NKT cells suppress) the host’s innate antitumor immune response to a B cell lymphoma. Blood 111(12): 5637–45.

    Article  PubMed  CAS  Google Scholar 

  • Schmieg, J., Yang, G., Franck, R. W., et al. (2003). Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide. J Exp Med 198(11): 1631–41.

    Article  PubMed  CAS  Google Scholar 

  • Schmieg, J., Yang, G., Franck, R. W., et al. (2005). Glycolipid presentation to natural killer T cells differs in an organ-dependent fashion. Proc Natl Acad Sci USA 102(4): 1127–32.

    Article  PubMed  CAS  Google Scholar 

  • Sfondrini, L., Besusso, D., Zoia, M. T., et al. (2002). Absence of the CD1 molecule up-regulates antitumor activity induced by CpG oligodeoxynucleotides in mice. Journal of Immunology 169(1): 151–58.

    CAS  Google Scholar 

  • Shimizu, K., Goto, A., Fukui, M., et al. (2007a). Tumor Cells Loaded with {alpha}-Galactosylceramide Induce Innate NKT and NK Cell-Dependent Resistance to Tumor Implantation in Mice. J Immunol 178(5): 2853–61.

    PubMed  CAS  Google Scholar 

  • Shimizu, K., Kurosawa, Y., Taniguchi, M., et al. (2007b). Cross-presentation of glycolipid from tumor cells loaded with {alpha}-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J Exp Med 204(11): 2641–53.

    Article  PubMed  CAS  Google Scholar 

  • Shin, Y., Hong, C., Lee, H., et al. (2010). NKT Cell-Dependent Regulation of Secondary Antigen-Specific, Conventional CD4+ T Cell Immune Responses. J Immunol doi:10.4049/jimmunol.0903121.

  • Silk, J. D., Hermans, I. F., Gileadi, U., et al. (2004). Utilizing the adjuvant properties of CD1d-dependent NK T cells in T cell-mediated immunotherapy. J Clin Invest 114(12): 1800–11.

    PubMed  CAS  Google Scholar 

  • Silk, J. D., Salio, M., Reddy, B. G., et al. (2008). Cutting edge: nonglycosidic CD1d lipid ligands activate human and murine invariant NKT cells. J Immunol 180(10): 6452–6.

    PubMed  CAS  Google Scholar 

  • Smyth, M. J., Cretney, E., Takeda, K., et al. (2001). Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis. Journal of Experimental Medicine 193(6): 661–70.

    Article  PubMed  CAS  Google Scholar 

  • Smyth, M. J., Crowe, N. Y., Pellicci, D. G., et al. (2002). Sequential production of interferon-gamma by NK1.1(+) T cells and natural killer cells is essential for the antimetastatic effect of alpha-galactosylceramide. Blood 99(4): 1259–66.

    Article  PubMed  CAS  Google Scholar 

  • Smyth, M. J., Swann, J. and Hayakawa, Y. (2007). Innate tumor immune surveillance. Adv Exp Med Biol 590: 103–11.

    Article  PubMed  Google Scholar 

  • Smyth, M. J., Thia, K. Y. T., Street, S. E. A., et al. (2000). Differential tumor surveillance by natural killer (NK) and NKT cells. Journal of Experimental Medicine 191(4): 661–68.

    Article  PubMed  CAS  Google Scholar 

  • Song, W., van der Vliet, H. J., Tai, Y. T., et al. (2008). Generation of antitumor invariant natural killer T cell lines in multiple myeloma and promotion of their functions via lenalidomide: a strategy for immunotherapy. Clin Cancer Res 14(21): 6955–62.

    Article  PubMed  CAS  Google Scholar 

  • Swann, J. B. and Smyth, M. J. (2007). Immune surveillance of tumors. J Clin Invest 117(5): 1137–46.

    Article  PubMed  CAS  Google Scholar 

  • Swann, J. B., Uldrich, A. P., van Dommelen, S., et al. (2009). Type I NKT cells suppress tumors in mice caused by p53 loss. Blood 113(25): 6382–5.

    Article  PubMed  CAS  Google Scholar 

  • Tachibana, T., Onodera, H., Tsuruyama, T., et al. (2005). Increased Intratumor V{alpha}24-Positive Natural Killer T Cells: A Prognostic Factor for Primary Colorectal Carcinomas. Clin Cancer Res 11(20): 7322–7.

    Article  PubMed  CAS  Google Scholar 

  • Teng, M. W., Sharkey, J., McLaughlin, N. M., et al. (2009a). CD1d-based combination therapy eradicates established tumors in mice. J Immunol 183(3): 1911–20.

    Article  PubMed  CAS  Google Scholar 

  • Teng, M. W., Westwood, J. A., Darcy, P. K., et al. (2007). Combined natural killer T-cell based immunotherapy eradicates established tumors in mice. Cancer Res 67(15): 7495–504.

    Article  PubMed  CAS  Google Scholar 

  • Teng, M. W., Yue, S., Sharkey, J., et al. (2009b). CD1d activation and blockade: a new antitumor strategy. J Immunol 182(6): 3366–71.

    Article  PubMed  CAS  Google Scholar 

  • Terabe, M. and Berzofsky, J. A. (2007). NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis. Trends Immunol 28: 491–96.

    Article  PubMed  CAS  Google Scholar 

  • Terabe, M., Khanna, C., Bose, S., et al. (2006). CD1d-restricted natural killer T cells can down-regulate tumor immunosurveillance independent of interleukin-4 receptor-signal transducer and activator of transcription 6 or transforming growth factor-beta. Cancer Res 66(7): 3869–75.

    Article  PubMed  CAS  Google Scholar 

  • Terabe, M., Matsui, S., Noben-Trauth, N., et al. (2000). NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nature Immunology 1(6): 515–20.

    Article  PubMed  CAS  Google Scholar 

  • Terabe, M., Swann, J., Ambrosino, E., et al. (2005). A nonclassical non-V{alpha}14 J{alpha}18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med 202(12): 1627–33.

    Article  PubMed  CAS  Google Scholar 

  • Toura, I., Kawano, T., Akutsu, Y., et al. (1999). Cutting edge: Inhibition of experimental tumor metastasis by dendritic cells pulsed with alpha-galactosylceramide. Journal of Immunology 163(5): 2387–91.

    CAS  Google Scholar 

  • Uldrich, A. P., Crowe, N. Y., Kyparissoudis, K., et al. (2005). NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, bim-dependent contraction, and hyporesponsiveness to further antigenic challenge. J Immunol 175(5): 3092–101.

    PubMed  CAS  Google Scholar 

  • Uno, T., Takeda, K., Kojima, Y., et al. (2006). Eradication of established tumors in mice by a combination antibody-based therapy. Nat Med 12(6): 693–8.

    Article  PubMed  CAS  Google Scholar 

  • van der Most, R. G., Currie, A., Robinson, B. W., et al. (2006). Cranking the immunologic engine with chemotherapy: using context to drive tumor antigen cross-presentation towards useful antitumor immunity. Cancer Res 66(2): 601–4.

    Article  PubMed  Google Scholar 

  • van der Vliet, H. J., Nishi, N., Koezuka, Y., et al. (2001a). Potent expansion of human natural killer T cells using alpha-galactosylceramide (KRN7000)-loaded monocyte-derived dendritic cells, cultured in the presence of IL-7 and IL-15. J Immunol Methods 247(1–2): 61–72.

    Article  PubMed  Google Scholar 

  • van der Vliet, H. J. J., Nishi, N., Koezuka, Y., et al. (2001b). Potent expansion of human natural killer T cells using alpha-galactosylceramide (KRN7000)-loaded monocyte-derived dendritic cells, cultured in the presence of IL-7 and IL-15. Journal of Immunological Methods 247(1–2): 61–72.

    Article  PubMed  Google Scholar 

  • Vonderheide, R. H., Dutcher, J. P., Anderson, J. E., et al. (2001). Phase I study of recombinant human CD40 ligand in cancer patients. J Clin Oncol 19(13): 3280–7.

    PubMed  CAS  Google Scholar 

  • Vonderheide, R. H., Flaherty, K. T., Khalil, M., et al. (2007). Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25(7): 876–83.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, M. T., Johansson, C., Olivares-Villagomez, D., et al. (2003). The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc Natl Acad Sci USA 100(19): 10913–8.

    Article  PubMed  CAS  Google Scholar 

  • Yu, K. O., Im, J. S., Molano, A., et al. (2005). Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of {alpha}-galactosylceramides. Proc Natl Acad Sci USA 102(9): 3383–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

SRM was supported by a Balzan Foundation Post-doctoral Fellowship. MJS was supported by a National Health and Medical Research Council of Australia (NH&MRC) Australia Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Smyth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mattarollo, S.R., Smyth, M.J. (2012). Therapeutic Approaches Utilising NKT Cells. In: Terabe, M., Berzofsky, J. (eds) Natural Killer T cells. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0613-6_7

Download citation

Publish with us

Policies and ethics