Skip to main content

The Regulation of CD1d+ and CD1d Tumors by NKT Cells

The Roles of NKT Cells in Regulating CD1d+ and CD1d Tumor Immunity

  • Chapter
  • First Online:
Natural Killer T cells

Abstract

Natural killer T (NKT) cells are T cells that also express NK cell ­markers. Unlike conventional T cells that recognize peptide antigens, NKT cells recognize lipids. CD1d, a MHC class I-like molecule, presents lipid antigens to NKT cells. Upon activation, NKT cells secrete both Th1 and Th2 cytokines, linking the innate and adaptive immune response. Due to the heterogeneity of NKT cells, their roles in the immune system are mixed and controversial. Here, we summarize the current knowledge of NKT cells as antitumor effector cells, in the control of both CD1d+ and CD1d tumors as model systems. Overall, NKT cells exhibit a remarkable broad range of antitumor activities and show great potential for antitumor immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen SN, Rognum TO, Lund E, Meling GI, and Hauge S (1993). Strong HLA-DR expression in large bowel carcinomas is associated with good prognosis. Br J Cancer 68:80–85

    PubMed  CAS  Google Scholar 

  • Arrenberg P, Halder R, Dai Y, Maricic I, and Kumar V (2010) Oligoclonality and innate-like features in the TCR repertoire of type II NKT cells reactive to a β-linked self-glycolipid. Proc Natl Acad Sci U S A 107:10984–10989

    PubMed  CAS  Google Scholar 

  • Baron JL, Gardiner L, Nishimura S, Shinkai K, Locksley R, and Ganem D (2002) Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 16:583–594

    PubMed  CAS  Google Scholar 

  • Baxevanis CN, Gritzapis AD, and Papamichail M (2003) In vivo antitumor activity of NKT cells activated by the combination of IL-12 and IL-18. J Immunol 171:2953–2959

    PubMed  CAS  Google Scholar 

  • Bendelac A, Hunziker RD, and Lantz O (1996) Increased interleukin 4 and immunoglobulin E production in transgenic mice overexpressing NK1 T cells. J Exp Med 184:1285–1293

    PubMed  CAS  Google Scholar 

  • Bendelac A, Killeen N, Littman DR, and Schwartz RH (1994) A subset of CD4+ thymocytes selected by MHC class I molecules. Science 263:1774–1778

    PubMed  CAS  Google Scholar 

  • Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR, and Brutkiewicz RR (1995) CD1 recognition by mouse NK1+ T lymphocytes. Science 268:863–865

    PubMed  CAS  Google Scholar 

  • Bendelac A, Rivera MN, Park SH, and Roark JH (1997) Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 15:535–562

    PubMed  CAS  Google Scholar 

  • Benlagha K, Weiss A, Beavis A, Teyton L, and Bendelac A (2000) In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp Med 191:1895–1903

    PubMed  CAS  Google Scholar 

  • Benoit L, Wang X, Pabst HF, Dutz J, and Tan R (2000) Defective NK cell activation in X-linked lymphoproliferative disease. J Immunol 165:3549–3553

    PubMed  CAS  Google Scholar 

  • Bix M, Coles M, and Raulet D (1993) Positive selection of Vβ8+ CD48 thymocytes by class I molecules expressed by hematopoietic cells. J Exp Med 178:901–908

    PubMed  CAS  Google Scholar 

  • Bonifacino JS, and Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447

    PubMed  CAS  Google Scholar 

  • Bricard G, Cesson V, Devevre E, Bouzourene H, Barbey C, Rufer N, Im JS, Alves PM, Martinet O, Halkic N, et al. (2009) Enrichment of human CD4+ Vα24/Vβ11 invariant NKT cells in intrahepatic malignant tumors. J Immunol 182:5140–5151

    PubMed  CAS  Google Scholar 

  • Brozovic S, Nagaishi T, Yoshida M, Betz S, Salas A, Chen D, Kaser A, Glickman J, Kuo T, Little A, et al. (2004) CD1d function is regulated by microsomal triglyceride transfer protein. Nat Med 10:535–539

    PubMed  CAS  Google Scholar 

  • Brutkiewicz RR (2006) CD1d ligands: the good, the bad, and the ugly. J Immunol 177:769–775

    PubMed  CAS  Google Scholar 

  • Brutkiewicz RR, Lin Y, Cho S, Hwang YK, Sriram V, and Roberts TJ (2003) CD1d-mediated antigen presentation to natural killer T (NKT) cells. Crit Rev Immunol 23:403–419

    PubMed  CAS  Google Scholar 

  • Brutkiewicz RR, and Sriram V (2002) Natural killer T (NKT) cells and their role in antitumor immunity. Crit Rev Oncol Hematol 41:287–298

    PubMed  Google Scholar 

  • Brutkiewicz RR, Willard CA, Gillett-Heacock, KK, Pawlak MR, Bailey JC, Khan MA, Nagala M, Du W, Gervay-Hague J, and Renukaradhya GJ (2007) Protein kinase C δ is a critical regulator of CD1d-mediated antigen presentation. Eur J Immunol 37:2390–2395

    PubMed  CAS  Google Scholar 

  • Burdin N, Brossay L, Koezuka Y, Smiley ST, Grusby MJ, Gui M, Taniguchi M, Hayakawa K, and Kronenberg M (1998) Selective ability of mouse CD1 to present glycolipids: α-galactosylceramide specifically stimulates Vα14+ NK T lymphocytes. J Immunol 161:3271–3281

    PubMed  CAS  Google Scholar 

  • Cannons JL, Yu LJ, Hill B, Mijares LA, Dombroski D, Nichols KE, Antonellis A, Koretzky GA, Gardner K, and Schwartzberg PL (2004) SAP regulates T(H)2 differentiation and PKC-theta-mediated activation of NF-kappaB1. Immunity 21:693–706

    PubMed  CAS  Google Scholar 

  • Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y, and Bendelac A (1999) Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 163:4647–4650

    PubMed  CAS  Google Scholar 

  • Chan B, Lanyi A, Song HK, Griesbach J, Simarro-Grande M, Poy F, Howie D, Sumegi J, Terhorst C, and Eck MJ (2003) SAP couples Fyn to SLAM immune receptors. Nat Cell Biol 5:155–160

    PubMed  CAS  Google Scholar 

  • Chang DH, Osman K, Connolly J, Kukreja A, Krasovsky J, Pack M, Hutchinson A, Geller M, Liu N, Annable R, et al. (2005) Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201:1503–1517

    PubMed  CAS  Google Scholar 

  • Coleman N, and Stanley MA (1994) Analysis of HLA-DR expression on keratinocytes in cervical neoplasia. Int J Cancer 56:314–319

    PubMed  CAS  Google Scholar 

  • Coquet JM, Chakravarti S, Kyparissoudis K, McNab FW, Pitt LA, McKenzie BS, Berzins SP, Smyth MJ, and Godfrey DI (2008) Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proc Natl Acad Sci U S A 105:11287–11292

    PubMed  CAS  Google Scholar 

  • Crowe NY, Coquet JM, Berzins SP, Kyparissoudis K, Keating R, Pellicci DG, Hayakawa Y, Godfrey DI, and Smyth MJ (2005) Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 202:1279–1288

    PubMed  CAS  Google Scholar 

  • Cuitino L, Godoy JA, Farias GG, Couve A, Bonansco C, Fuenzalida M, and Inestrosa NC (2010) Wnt-5a modulates recycling of functional GABAA receptors on hippocampal neurons. J Neurosci 30:8411–8420

    PubMed  CAS  Google Scholar 

  • Cuitino L, Godoy JA, Farias GG, Couve A, Bonansco C, Fuenzalida M, and Inestrosa NC (2010) Wnt-5a modulates recycling of functional GABAA receptors on hippocampal neurons. J Neurosci 30:8411–8420

    PubMed  CAS  Google Scholar 

  • De Santo C, Salio M, Masri SH, Lee LY, Dong T, Speak AO, Porubsky S, Booth S, Veerapen N, Besra GS, et al. (2008) Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest 118:4036–4048

    PubMed  Google Scholar 

  • Dhodapkar MV, Geller MD, Chang DH, Shimizu K, Fujii S, Dhodapkar KM, and Krasovsky J (2003) A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med 197:1667–1676

    PubMed  CAS  Google Scholar 

  • Dougan SK, Salas A, Rava P, Agyemang A, Kaser A, Morrison J, Khurana A, Kronenberg M, Johnson C, Exley M, et al. (2005) Microsomal triglyceride transfer protein lipidation and ­control of CD1d on antigen-presenting cells. J Exp Med 202:529–539

    PubMed  CAS  Google Scholar 

  • Dupre L, Andolfi G, Tangye SG, Clementi R, Locatelli F, Arico M, Aiuti A, and Roncarolo MG (2005) SAP controls the cytolytic activity of CD8+ T cells against EBV-infected cells. Blood 105:4383–4389

    PubMed  CAS  Google Scholar 

  • Eberl G, Lowin-Kropf B, and MacDonald HR (1999) Cutting edge: NKT cell development is selectively impaired in Fyn- deficient mice. J Immunol 163:4091–4094

    PubMed  CAS  Google Scholar 

  • Eberl G, and MacDonald HR (2000) Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 30:985–992

    PubMed  CAS  Google Scholar 

  • Exley M, Garcia, J., Balk SP, and Porcelli S (1997) Requirements for CD1d recognition by human invariant Vα24+ CD4CD8 T cells. J Exp Med 186:109–120

    PubMed  CAS  Google Scholar 

  • Exley MA., Tahir SM, Cheng O, Shaulov A, Joyce R, Avigan D, Sackstein R, and Balk SP (2001) A major fraction of human bone marrow lymphocytes are Th2-like CD1d-reactive T cells that can suppress mixed lymphocyte responses. J Immunol 167:5531–5534

    PubMed  CAS  Google Scholar 

  • Fowlkes BJ, Kruisbeek AM, Ton-That H, Weston MA, Coligan JE, Schwartz RH, and Pardoll DM (1987) A novel population of T-cell receptor αβ-bearing thymocytes which predominantly expresses a single Vβ gene family. Nature 329:251–254

    PubMed  CAS  Google Scholar 

  • Fujii S, Shimizu K, Smith C, Bonifaz L, and Steinman RM (2003) Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 198:267–279

    PubMed  CAS  Google Scholar 

  • Fuss IJ, Heller F, Boirivant M, Leon F, Yoshida M, Fichtner-Feigl S, Yang Z, Exley M, Kitani A, Blumberg RS, et al. (2004) Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest 113:1490–1497

    PubMed  CAS  Google Scholar 

  • Gabrilovich DI, and Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    PubMed  CAS  Google Scholar 

  • Gadola SD, Dulphy N, Salio M, and Cerundolo V (2002) Vα24-JαQ-independent, CD1d-restricted recognition of α-galactosylceramide by human CD4(+) and CD8αβ(+) T lymphocytes. J Immunol 168:5514–5520

    PubMed  CAS  Google Scholar 

  • Gapin L, Matsuda JL, Surh CD, and Kronenberg M (2001) NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat Immunol 2:971–978

    PubMed  CAS  Google Scholar 

  • Gaspar HB, Sharifi R, Gilmour KC, and Thrasher AJ (2002) X-linked lymphoproliferative disease: clinical, diagnostic and molecular perspective. Br J Haematol 119:585–595

    PubMed  CAS  Google Scholar 

  • Giaccone G, Punt CJ, Ando Y, Ruijter R, Nishi N, Peters M, von Blomberg BM, Scheper RJ, van der Vliet HJ, van den Eertwegh AJ, et al. (2002) A phase I study of the natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8:3702–3709

    PubMed  CAS  Google Scholar 

  • Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, and Van Kaer L (2004) NKT cells: what’s in a name? Nat Rev Immunol 4:231–237

    PubMed  CAS  Google Scholar 

  • Godfrey DI, Stankovic S, and Baxter AG (2010) Raising the NKT cell family. Nat Immunol 11:197–206

    PubMed  CAS  Google Scholar 

  • Gorbachev AV, and Fairchild RL (2006) Activated NKT cells increase dendritic cell migration and enhance CD8+ T cell responses in the skin. Eur J Immunol 36:2494–2503

    PubMed  CAS  Google Scholar 

  • Gordon DA, Jamil H, Sharp D, Mullaney D, Yao Z, Gregg RE, and Wetterau J (1994) Secretion of apolipoprotein B-containing lipoproteins from HeLa cells is dependent on expression of the microsomal triglyceride transfer protein and is regulated by lipid availability. Proc Natl Acad Sci U S A 91:7628–7632

    PubMed  CAS  Google Scholar 

  • Gumperz JE, Miyake S, Yamamura T, and Brenner MB (2002) Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195:625–636

    PubMed  CAS  Google Scholar 

  • Gumperz JE, Roy C, Makowska A, Lum D, Sugita M, Podrebarac T, Koezuka Y, Porcelli SA., Cardell S, Brenner MB, and Behar SM (2000) Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12:211–221

    PubMed  CAS  Google Scholar 

  • Hakomori S (1996) Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res 56:5309–5318

    PubMed  CAS  Google Scholar 

  • Halder RC, Aguilera C, Maricic I, and Kumar V (2007) Type II NKT cell-mediated anergy ­induction in type I NKT cells prevents inflammatory liver disease. J Clin Invest 117:2302–2312

    PubMed  CAS  Google Scholar 

  • Haraguchi K, Takahashi T, Nakahara F, Matsumoto A, Kurokawa M, Ogawa S, Oda H, Hirai H, and Chiba S (2006) CD1d expression level in tumor cells is an important determinant for anti-tumor immunity by natural killer T cells. Leuk Lymphoma 47:2218–2223

    PubMed  CAS  Google Scholar 

  • Hermans IF, Silk JD, Gileadi U, Masri SH, Shepherd D, Farrand KJ, Salio M, and Cerundolo V (2007) Dendritic cell function can be modulated through cooperative actions of TLR ligands and invariant NKT cells. J Immunol 178:2721–2729

    PubMed  CAS  Google Scholar 

  • Hermans IF, Silk JD, Gileadi U, Salio M, Mathew B, Ritter G, Schmidt R, Harris AL, Old L, and Cerundolo V (2003) NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 171:5140–5147

    PubMed  CAS  Google Scholar 

  • Hong C, Lee H, Oh M, Kang CY, Hong S, and Park SH (2006) CD4+ T cells in the absence of the CD8+ cytotoxic T cells are critical and sufficient for NKT cell-dependent tumor rejection. J Immunol 177:6747–6757

    PubMed  CAS  Google Scholar 

  • Hong C, Lee H, Park YK, Shin J, Jung S, Kim H, Hong S, and Park SH (2009) Regulation of secondary antigen-specific CD8(+) T-cell responses by natural killer T cells. Cancer Res 69:4301–4308

    PubMed  CAS  Google Scholar 

  • Huck K, Feyen O, Niehues T, Ruschendorf F, Hubner N, Laws HJ, Telieps T, Knapp S, Wacker HH, Meindl A, et al. (2009) Girls homozygous for an IL-2-inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest 119:1350–1358

    PubMed  CAS  Google Scholar 

  • Imataki O, Heike Y, Makiyama H, Iizuka A, Ikarashi Y, Ishida T, Wakasugi H, and Takaue Y (2008) Insufficient ex vivo expansion of Vα24(+) natural killer T cells in malignant lymphoma patients related to the suppressed expression of CD1d molecules on CD14(+) cells. Cytotherapy 10:497–506

    PubMed  CAS  Google Scholar 

  • Ishikawa A, Motohashi S, Ishikawa E, Fuchida H, Higashino K, Otsuji M, Iizasa T, Nakayama T, Taniguchi M, and Fujisawa T (2005) A phase I study of α-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 11:1910–1917

    PubMed  CAS  Google Scholar 

  • Jahng A, Maricic I, Aguilera C, Cardell S, Halder RC, and Kumar V (2004) Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med 199:947–957

    PubMed  CAS  Google Scholar 

  • Jayawardena-Wolf J, Benlagha K, Chiu YH, Mehr R, and Bendelac A (2001) CD1d endosomal trafficking is independently regulated by an intrinsic CD1d-encoded tyrosine motif and by the invariant chain. Immunity 15:897–908

    PubMed  CAS  Google Scholar 

  • Kang SJ, and Cresswell P (2004) Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells. Nat Immunol 5:175–181

    PubMed  CAS  Google Scholar 

  • Karadimitris A, Gadola S, Altamirano M, Brown D, Woolfson A, Klenerman P, Chen JL, Koezuka Y, Roberts IA, Price DA, et al. (2001) Human CD1d-glycolipid tetramers generated by in vitro oxidative refolding chromatography. Proc Natl Acad Sci USA 98:3294–3298

    PubMed  CAS  Google Scholar 

  • Kawana K, Quayle AJ, Ficarra M, Ibana JA, Shen L, Kawana Y, Yang H, Marrero L, Yavagal S, Greene SJ, et al. (2007) CD1d degradation in Chlamydia trachomatis-infected epithelial cells is the result of both cellular and chlamydial proteasomal activity. J Biol Chem 282:7368–7375

    PubMed  CAS  Google Scholar 

  • Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, et al. (1997) CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278:1626–1629

    PubMed  CAS  Google Scholar 

  • Kawano T, Nakayama T, Kamada N, Kaneko Y, Harada M, Ogura N, Akutsu Y, Motohashi S, Iizasa T, Endo H, et al. (1999) Antitumor cytotoxicity mediated by ligand-activated human V α24 NKT cells. Cancer Res 59:5102–5105

    PubMed  CAS  Google Scholar 

  • Kenna T, Golden-Mason L, Porcelli SA., Koezuka Y, Hegarty JE, O’Farrelly C, and Doherty DG (2003) NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol 171:1775–1779

    PubMed  CAS  Google Scholar 

  • Kim HS, Garcia J, Exley M, Johnson KW, Balk SP, and Blumberg RS (1999) Biochemical characterization of CD1d expression in the absence of β2-microglobulin. J Biol Chem 274:9289–9295

    PubMed  CAS  Google Scholar 

  • Kinjo Y, Wu D, Kim G, Xing GW, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong CH, and Kronenberg M (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525

    PubMed  CAS  Google Scholar 

  • Ko HJ, Lee JM, Kim YJ, Kim YS, Lee KA, and Kang CY (2009) Immunosuppressive myeloid-derived suppressor cells can be converted into immunogenic APCs with the help of activated NKT cells: an alternative cell-based antitumor vaccine. J Immunol 182:1818–1828

    PubMed  CAS  Google Scholar 

  • Koseki H, Asano H, Inaba T, Miyashita N, Moriwaki K, Lindahl KF, Mizutani Y, Imai K, and Taniguchi M (1991) Dominant expression of a distinctive V14+ T-cell antigen receptor α chain in mice. Proc Natl Acad Sci USA 88:7518–7522

    PubMed  CAS  Google Scholar 

  • Koseki H, Imai K, Ichikawa T, Hayata I, and Taniguchi M (1989) Predominant use of a particular α-chain in suppressor T cell hybridomas specific for keyhole limpet hemocyanin. Int Immunol 1:557–564

    PubMed  CAS  Google Scholar 

  • Koseki H, Imai K, Nakayama F, Sado T, Moriwaki K, and Taniguchi M (1990) Homogenous junctional sequence of the V14+ T-cell antigen receptor α chain expanded in unprimed mice. Proc Natl Acad Sci USA 87:5248–5252

    PubMed  CAS  Google Scholar 

  • Kronenberg M, and Gapin L (2002) The unconventional lifestyle of NKT cells. Nat Rev Immunol 2:557–568

    PubMed  CAS  Google Scholar 

  • Kunii N, Horiguchi S, Motohashi S, Yamamoto H, Ueno N, Yamamoto S, Sakurai D, Taniguchi M, Nakayama T, and Okamoto Y (2009) Combination therapy of in vitro-expanded natural killer T cells and α-galactosylceramide-pulsed antigen-presenting cells in patients with recurrent head and neck carcinoma. Cancer Sci 100:1092–1098

    PubMed  CAS  Google Scholar 

  • Lantz O, and Bendelac A (1994) An invariant T cell receptor α chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD48 T cells in mice and humans. J Exp Med 180:1097–1106

    PubMed  CAS  Google Scholar 

  • Lawton AP, Prigozy TI, Brossay L, Pei B, Khurana A, Martin D, Zhu T, Spate K, Ozga M, Honing S, et al. (2005) The mouse CD1d cytoplasmic tail mediates CD1d trafficking and antigen presentation by adaptor protein 3-dependent and -independent mechanisms. J Immunol 174:3179–3186

    PubMed  CAS  Google Scholar 

  • Lee H, Hong C, Shin J, Oh S, Jung S, Park YK, Hong S, Lee GR, and Park SH (2009) The presence of CD8+ invariant NKT cells in mice. Exp Mol Med 41:866–872

    PubMed  CAS  Google Scholar 

  • Lynch L, O’Shea D, Winter DC, Geoghegan J, Doherty DG, and O’Farrelly C (2009) Invariant NKT cells and CD1d(+) cells amass in human omentum and are depleted in patients with cancer and obesity. Eur J Immunol 39:1893–1901

    PubMed  CAS  Google Scholar 

  • Matsuda JL, Naidenko OV, Gapin L, Nakayama T, Taniguchi M, Wang CR, Koezuka Y, and Kronenberg M (2000) Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med 192:741–754

    PubMed  CAS  Google Scholar 

  • Mattarollo SR, Yong M, Tan L, Frazer IH, and Leggatt GR (2010) Secretion of IFN-gamma but not IL-17 by CD1d-restricted NKT cells enhances rejection of skin grafts expressing epithelial cell-derived antigen. J Immunol 184:5663–5669

    PubMed  CAS  Google Scholar 

  • Mattner J, Debord KL, Ismail N, Goff RD, Cantu C, 3 rd Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, et al. (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529

    PubMed  CAS  Google Scholar 

  • Metelitsa LS, Weinberg KI, Emanuel PD, and Seeger RC (2003) Expression of CD1d by myelomonocytic leukemias provides a target for cytotoxic NKT cells. Leukemia 17, 1068–1077

    PubMed  CAS  Google Scholar 

  • Metelitsa LS, Wu HW, Wang H, Yang Y, Warsi Z, Asgharzadeh S, Groshen S, Wilson SB, and Seeger RC (2004) Natural killer T cells infiltrate neuroblastomas expressing the chemokine CCL2. J Exp Med 199:1213–1221

    PubMed  CAS  Google Scholar 

  • Michel ML, Keller AC, Paget C, Fujio M, Trottein F, Savage PB, Wong CH, Schneider E, Dy M, and Leite-de-Moraes MC (2007) Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. J Exp Med 204:995–1001

    PubMed  CAS  Google Scholar 

  • Michel ML, Mendes-da-Cruz D, Keller AC, Lochner M, Schneider E, Dy M, Eberl G, and Leite-de-Moraes MC (2008) Critical role of ROR-gammat in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc Natl Acad Sci U S A 105:19845–19850

    PubMed  CAS  Google Scholar 

  • Mittal S, Subramanyam D, Dey D, Kumar RV, and Rangarajan A (2009) Cooperation of Notch and Ras/MAPK signaling pathways in human breast carcinogenesis. Mol Cancer 8, 128

    PubMed  Google Scholar 

  • Moody DB, and Porcelli SA (2003) Intracellular pathways of CD1 antigen presentation. Nat Rev Immunol 3:11–22

    PubMed  CAS  Google Scholar 

  • Moreno M, Mol BM, von Mensdorff-Pouilly S, Verheijen RH, von Blomberg BM, van den Eertwegh AJ, Scheper RJ, and Bontkes HJ (2008a) Toll-like receptor agonists and invariant natural killer T-cells enhance antibody-dependent cell-mediated cytotoxicity (ADCC). Cancer Lett 272:70–76

    PubMed  CAS  Google Scholar 

  • Moreno M, Molling JW, von Mensdorff-Pouilly S, Verheijen RH, Hooijberg E, Kramer D, Reurs AW, van den Eertwegh AJ, von Blomberg BM, Scheper RJ, and Bontkes HJ (2008b) IFN-gamma-producing human invariant NKT cells promote tumor-associated antigen-specific cytotoxic T cell responses. J Immunol 181:2446–2454

    PubMed  CAS  Google Scholar 

  • Motohashi S, Ishikawa A, Ishikawa E, Otsuji M, Iizasa T, Hanaoka H, Shimizu N, Horiguchi S, Okamoto Y, Fujii S, et al. (2006) A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 12:6079–6086

    PubMed  CAS  Google Scholar 

  • Motohashi S, Nagato K, Kunii N, Yamamoto H, Yamasaki K, Okita K, Hanaoka H, Shimizu N, Suzuki M, Yoshino I, et al. (2009) A phase I-II study of α-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J Immunol 182:2492–2501

    PubMed  CAS  Google Scholar 

  • Nagaraj S, Ziske C, Strehl J, Messmer D, Sauerbruch T, and Schmidt-Wolf IG (2006) Dendritic cells pulsed with α-galactosylceramide induce anti-tumor immunity against pancreatic cancer in vivo. Int Immunol 18:1279–1283

    PubMed  CAS  Google Scholar 

  • Nakagawa R, Nagafune I, Tazunoki Y, Ehara H, Tomura H, Iijima R, Motoki K, Kamishohara M, and Seki S (2001) Mechanisms of the antimetastatic effect in the liver and of the hepatocyte injury induced by α-galactosylceramide in mice. J Immunol 166:6578–6584

    PubMed  CAS  Google Scholar 

  • Nakamura T, Sonoda KH, Faunce DE, Gumperz J, Yamamura T, Miyake S, and Stein-Streilein J (2003) CD4+ NKT cells, but not conventional CD4+ T cells, are required to generate efferent CD8+ T regulatory cells following antigen inoculation in an immune-privileged site. J Immunol 171:1266–1271

    PubMed  CAS  Google Scholar 

  • Nicol A, Nieda M, Koezuka Y, Porcelli S, Suzuki K, Tadokoro K, Durrant S, and Juji T (2000) Human invariant Vα24+ natural killer T cells activated by α-galactosylceramide (KRN7000) have cytotoxic anti-tumour activity through mechanisms distinct from T cells and natural killer cells. Immunology 99:229–234

    PubMed  CAS  Google Scholar 

  • Ohteki T, and MacDonald HR (1994) Major histocompatibility complex class I related molecules control the development of CD4+8 and CD48 subsets of natural killer 1.1+ T cell receptor-α/β+ cells in the liver of mice. J. Exp. Med. 180:699–704

    PubMed  CAS  Google Scholar 

  • Osada T, Morse MA, Lyerly HK, and Clay TM (2005) Ex vivo expanded human CD4+ regulatory NKT cells suppress expansion of tumor antigen-specific CTLs. Int Immunol 17:1143–1155

    PubMed  CAS  Google Scholar 

  • Osman Y, Kawamura T, Naito T, Takeda K, Van Kaer L, Okumura K, and Abo T (2000) Activation of hepatic NKT cells and subsequent liver injury following administration of α-galactosylceramide. Eur J Immunol 30:1919–1928

    PubMed  CAS  Google Scholar 

  • Parekh VV, Wilson MT, Olivares-Villagomez D, Singh AK, Wu L, Wang CR, Joyce S, and Van Kaer L (2005) Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 115:2572–2583

    PubMed  CAS  Google Scholar 

  • Pasquier B, Yin L, Fondaneche MC, Relouzat F, Bloch-Queyrat C, Lambert N, Fischer A, de Saint-Basile G, and Latour S (2005) Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J Exp Med 201:695–701

    PubMed  CAS  Google Scholar 

  • Pichavant M, Goya S, Meyer EH, Johnston RA, Kim HY, Matangkasombut P, Zhu M, Iwakura Y, Savage PB, DeKruyff RH, et al. (2008) Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J Exp Med 205:385–393

    PubMed  CAS  Google Scholar 

  • Radhakrishnan VM, and Martinez JD (2010) 14-3-3gamma induces oncogenic transformation by stimulating MAP kinase and PI3K signaling. PloS one 5:e11433

    PubMed  Google Scholar 

  • Radhakrishnan VM, and Martinez JD (2010) 14-3-3gamma induces oncogenic transformation by stimulating MAP kinase and PI3K signaling. PloS one 5:e11433

    PubMed  CAS  Google Scholar 

  • Renukaradhya GJ, Khan MA, Vieira M, Du W, Gervay-Hague J, and Brutkiewicz RR (2008) Type I NKT cells protect (and type II NKT cells suppress) the host’s innate antitumor immune response to a B-cell lymphoma. Blood 111:5637–5645

    PubMed  CAS  Google Scholar 

  • Renukaradhya GJ, Sriram V, Du W, Gervay-Hague J, Van Kaer L, and Brutkiewicz RR (2006) Inhibition of antitumor immunity by invariant natural killer T cells in a T-cell lymphoma model in vivo. Int J Cancer 118:3045–3053

    PubMed  CAS  Google Scholar 

  • Renukaradhya GJ, Webb TJ, Khan MA, Lin YL, Du W, Gervay-Hague J, and Brutkiewicz RR (2005) Virus-induced inhibition of CD1d1-mediated antigen presentation: reciprocal regulation by p38 and ERK. J Immunol 175:4301–4308

    PubMed  CAS  Google Scholar 

  • Roberts TJ, Sriram V, Spence PM, Gui M, Hayakawa K, Bacik I, Bennink JR, Yewdell JW, and Brutkiewicz RR (2002) Recycling CD1d1 molecules present endogenous antigens processed in an endocytic compartment to NKT cells. J Immunol 168:5409–5414

    PubMed  CAS  Google Scholar 

  • Ronger-Savle S, Valladeau J, Claudy A, Schmitt D, Peguet-Navarro J, Dezutter-Dambuyant C, Thomas L, and Jullien D (2005) TGFβ inhibits CD1d expression on dendritic cells. J Invest Dermatol 124:116–118

    PubMed  CAS  Google Scholar 

  • Sakai H, Moriura Y, Notomi T, Kawawaki J, Ohnishi K, and Kuno M (2010) Phospholipase C-dependent Ca2  +  −sensing Pathways Leading to Endocytosis and Inhibition of the Plasma Membrane Vacuolar H  +  −ATPase in osteoclasts. Am J Physiol Cell Physiol doi:10.1152/ajpcell.00486.2009

  • Seliger B, Maeurer MJ, and Ferrone S (2000) Antigen-processing machinery breakdown and tumor growth. Immunol Today 21:455–464

    PubMed  CAS  Google Scholar 

  • Shimizu K, Goto A, Fukui M, Taniguchi M, and Fujii S (2007) Tumor cells loaded with α-galactosylceramide induce innate NKT and NK cell-dependent resistance to tumor implantation in mice. J Immunol 178:2853–2861

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Wallace ME, Nutt SL, Yagita H, Godfrey DI, and Hayakawa Y (2005) Sequential activation of NKT cells and NK cells provides effective innate immunotherapy of cancer. J Exp Med 201:1973–1985

    PubMed  CAS  Google Scholar 

  • Solinas G, Germano G, Mantovani A, and Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86:1065–1073

    PubMed  CAS  Google Scholar 

  • Song L, Ara T, Wu HW, Woo CW, Reynolds CP, Seeger RC, DeClerck YA, Thiele CJ, Sposto R, and Metelitsa LS (2007) Oncogene MYCN regulates localization of NKT cells to the site of disease in neuroblastoma. J Clin Invest 117:2702–2712

    PubMed  CAS  Google Scholar 

  • Song L, Asgharzadeh S, Salo J, Engell K, Wu HW, Sposto R, Ara T, Silverman AM, DeClerck YA, Seeger RC, and Metelitsa LS (2009) Vα24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J Clin Invest 119:1524–1536

    PubMed  CAS  Google Scholar 

  • Spanoudakis E, Hu M, Naresh K, Terpos E, Melo V, Reid A, Kotsianidis I, Abdalla S, Rahemtulla A, and Karadimitris A (2009) Regulation of multiple myeloma survival and progression by CD1d. Blood 113:2498–2507

    PubMed  CAS  Google Scholar 

  • Sriram V, Cho S, Li P, O’Donnell PW, Dunn C, Hayakawa K, Blum JS, and Brutkiewicz RR (2002) Inhibition of glycolipid shedding rescues recognition of a CD1+ T cell lymphoma by natural killer T (NKT) cells. Proc Natl Acad Sci USA 99:8197–8202

    PubMed  CAS  Google Scholar 

  • Sriram V, Du W, Gervay-Hague J, and Brutkiewicz RR (2005) Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol 35:1692–1701

    PubMed  CAS  Google Scholar 

  • Stirnemann K, Romero JF, Baldi L, Robert B, Cesson V, Besra GS, Zauderer M, Wurm F, Corradin G, Mach JP, et al. (2008) Sustained activation and tumor targeting of NKT cells using a CD1d-anti-HER2-scFv fusion protein induce antitumor effects in mice. J Clin Invest 118:994–1005

    PubMed  CAS  Google Scholar 

  • Swann JB, Uldrich AP, van Dommelen S, Sharkey J, Murray WK, Godfrey DI, and Smyth MJ (2009) Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood 113:6382–6385

    PubMed  CAS  Google Scholar 

  • Tahir SM, Cheng O, Shaulov A, Koezuka Y, Bubley GJ, Wilson SB, Balk SP, and Exley MA. (2001) Loss of IFN-gamma production by invariant NK T cells in advanced cancer. J Immunol 167:4046–4050

    PubMed  CAS  Google Scholar 

  • Teng MW, Westwood JA, Darcy PK, Sharkey J, Tsuji M, Franck RW, Porcelli SA., Besra GS, Takeda K, Yagita H, et al. (2007) Combined natural killer T-cell based immunotherapy eradicates established tumors in mice. Cancer Res 67:7495–7504

    PubMed  CAS  Google Scholar 

  • Terabe M, and Berzofsky JA (2007) NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis. Trends Immunol 28:491–496

    PubMed  CAS  Google Scholar 

  • Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD, Chen W, Wahl SM, Ledbetter S, Pratt B, et al. (2003) Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 198:1741–1752

    PubMed  CAS  Google Scholar 

  • Terabe M, Swann J, Ambrosino E, Sinha P, Takaku S, Hayakawa Y, Godfrey DI, Ostrand-Rosenberg S, Smyth MJ, and Berzofsky JA (2005) A nonclassical non-Vα14Jα18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med 202:1627–1633

    PubMed  CAS  Google Scholar 

  • Tsuji M (2006) Glycolipids and phospholipids as natural CD1d-binding NKT cell ligands. Cell Mol Life Sci 63:1889–1898

    PubMed  CAS  Google Scholar 

  • Uchida T, Horiguchi S, Tanaka Y, Yamamoto H, Kunii N, Motohashi S, Taniguchi M, Nakayama T, and Okamoto Y (2008) Phase I study of α-galactosylceramide-pulsed antigen presenting cells administration to the nasal submucosa in unresectable or recurrent head and neck cancer. Cancer Immunol Immunother 57:337–345

    PubMed  CAS  Google Scholar 

  • Uemura Y, Liu TY, Narita Y, Suzuki M, Nakatsuka R, Araki T, Matsumoto M, Iwai LK, Hirosawa N, Matsuoka Y, et al. (2009) Cytokine-dependent modification of IL-12p70 and IL-23 balance in dendritic cells by ligand activation of Vα24 invariant NKT cells. J Immunol 183:201–208

    PubMed  CAS  Google Scholar 

  • van der Vliet HJ, Wang R, Yue SC, Koon HB, Balk SP, and Exley MA (2008) Circulating myeloid dendritic cells of advanced cancer patients result in reduced activation and a biased cytokine profile in invariant NKT cells. J Immunol 180:7287–7293

    PubMed  Google Scholar 

  • Vilarinho S, Ogasawara K, Nishimura S, Lanier LL, and Baron JL (2007) Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus. Proc Natl Acad Sci U S A 104:18187–18192

    PubMed  CAS  Google Scholar 

  • Watarai H, Nakagawa R, Omori-Miyake M, Dashtsoodol N, and Taniguchi M (2008) Methods for detection, isolation and culture of mouse and human invariant NKT cells. Nat Protoc 3:70–78

    PubMed  CAS  Google Scholar 

  • Webb TJ, Giuntoli RL 2nd, Rogers O, Schneck J, and Oelke M (2008) Ascites specific inhibition of CD1d-mediated activation of natural killer T cells. Clin Cancer Res 14, 7652–7658

    PubMed  CAS  Google Scholar 

  • Winau F, Schwierzeck V, Hurwitz R, Remmel N, Sieling PA, Modlin RL, Porcelli SA., Brinkmann V, Sugita M, Sandhoff K, et al. (2004) Saposin C is required for lipid presentation by human CD1b. Nat Immunol 5:169–174

    PubMed  CAS  Google Scholar 

  • Yoshimoto T, and Paul WE (1994) CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J Exp Med 179:1285–1295

    PubMed  CAS  Google Scholar 

  • Young WW Jr., Borgman CA, and Wolock DM (1986) Modes of shedding of glycosphingolipids from mouse lymphoma cells. J Biol Chem 261:2279–2283

    PubMed  CAS  Google Scholar 

  • Yuan W, Qi X, Tsang P, Kang SJ, Illarionov PA, Besra GS, Gumperz J, and Cresswell P (2007) Saposin B is the dominant saposin that facilitates lipid binding to human CD1d molecules. Proc Natl Acad Sci U S A 104:5551–5556

    PubMed  CAS  Google Scholar 

  • Yuling H, Ruijing X, Li L, Xiang J, Rui Z, Yujuan W, Lijun Z, Chunxian D, Xinti T, Wei X, et al. (2009) EBV-induced human CD8+ NKT cells suppress tumorigenesis by EBV-associated malignancies. Cancer Res 69:7935–7944

    PubMed  Google Scholar 

  • Zajonc DM, Maricic I, Wu D, Halder R, Roy K, Wong CH, Kumar V, and Wilson IA (2005) Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. J Exp Med 202:1517–1526

    PubMed  CAS  Google Scholar 

  • Zeng Z, Castano AR, Segelke BW, Stura EA, Peterson PA, and Wilson IA (1997) Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. Science 277:339–345

    PubMed  CAS  Google Scholar 

  • Zheng P, Sarma S, Guo Y, and Liu Y (1999) Two mechanisms for tumor evasion of preexisting cytotoxic T-cell responses: lessons from recurrent tumors. Cancer Res 59:3461–3467

    PubMed  CAS  Google Scholar 

  • Zhou D, Cantu C 3 rd, Sagiv Y, Schrantz N, Kulkarni AB, Qi X, Mahuran DJ, Morales CR, Grabowski GA, Benlagha K, et al. (2004) Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303:523–527

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy R. Brutkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, J., Renukaradhya, G.J., Brutkiewicz, R.R. (2012). The Regulation of CD1d+ and CD1d Tumors by NKT Cells. In: Terabe, M., Berzofsky, J. (eds) Natural Killer T cells. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0613-6_5

Download citation

Publish with us

Policies and ethics