Skip to main content

Clinical Trials of Invariant Natural Killer T Cell-Based Immunotherapy for Cancer

  • Chapter
  • First Online:
Natural Killer T cells

Abstract

Human Vα24+Vβ11+ invariant NKT (iNKT) cells are distinct lymphocytes that play an important role in tumor immunity. iNKT cells have the capability to positively modulate the function of a wide variety of immune cells in both direct and indirect manner, thereby bridging innate and acquired immunity. Abnormalities in the number and function of iNKT cells have been observed in patients with malignant diseases, and their presence is associated with a poor clinical outcome. Therefore, therapeutic strategies focused on the reconstitution of the impaired iNKT cell pool and amelioration of their function would be a reasonable rationale for the treatment of cancer. In this chapter, the progress made in the clinical trials of iNKT cell-based immunotherapy is briefly reviewed, and the role of iNKT cells in tumor immunotherapy is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α-GalCer:

α-Galactosylceramide

APCs:

Antigen presenting cells

NKT:

Natural killer T

DCs:

Dendritic cells

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

IL:

Interleukin

PBMCs:

Peripheral blood mononuclear cells

References

  • Akutsu Y, Nakayama T, Harada M et al (2002) Expansion of lung Vα14 NKT cells by administration of α-galactosylceramide-pulsed dendritic cells. Jpn J Cancer Res 93: 397–403

    PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245–252

    Article  PubMed  CAS  Google Scholar 

  • Barral P, Eckl-Dorna J, Harwood NE et al (2008) B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo. Proc Natl Acad Sci USA 105: 8345–8350

    Article  PubMed  CAS  Google Scholar 

  • Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22: 817–890

    Article  PubMed  CAS  Google Scholar 

  • Carnaud C, Lee D, Donnars O et al (1999) Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 163: 4647–4650

    PubMed  CAS  Google Scholar 

  • Cerundolo V, Silk JD, Masri SH et al (2009) Harnessing invariant NKT cells in vaccination strategies. Nat Rev Immunol 9: 28–38

    Article  PubMed  CAS  Google Scholar 

  • Chang DH, Osman K, Connolly J et al (2005) Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201: 1503–1517

    Article  PubMed  CAS  Google Scholar 

  • De Santo C, Salio M, Masri SH et al (2008) Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest 118: 4036–4048

    Article  PubMed  Google Scholar 

  • Figdor CG, de Vries IJ, Lesterhuis WJ et al (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10: 475–480

    Article  PubMed  CAS  Google Scholar 

  • Fuhshuku K, Hongo N, Tashiro T et al (2008) RCAI-8, 9, 18, 19, and 49–52, conformationally restricted analogues of KRN7000 with an azetidine or a pyrrolidine ring: Their synthesis and bioactivity for mouse natural killer T cells to produce cytokines. Bioorg Med Chem 16: 950–964

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Liu K, Smith C et al (2004) The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 199: 1607–1618

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Shimizu K, Hemmi H et al (2006) Glycolipid α-C-galactosylceramide is a distinct inducer of dendritic cell function during innate and adaptive immune responses of mice. Proc Natl Acad Sci USA 103: 11252–11257

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Shimizu K, Kronenberg M et al (2002) Prolonged IFN-γ-producing NKT response induced with α-galactosylceramide-loaded DCs. Nat Immunol 3: 867–874

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Shimizu K, Smith C et al (2003) Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 198: 267–279

    Article  PubMed  CAS  Google Scholar 

  • Giaccone G, Punt CJ, Ando Y et al (2002) A phase I study of the natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8: 3702–3709

    PubMed  CAS  Google Scholar 

  • Hermans IF, Silk JD, Gileadi U et al (2003) NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 171: 5140–5147

    PubMed  CAS  Google Scholar 

  • Horiguchi S, Matsuoka T, Okamoto Y et al (2007) Migration of tumor antigen-pulsed dendritic cells after mucosal administration in the human upper respiratory tract. J Clin Immunol 27: 598–604

    Article  PubMed  Google Scholar 

  • Ishikawa A, Motohashi S, Ishikawa E et al (2005a) A phase I study of α-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 11: 1910–1917

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa E, Motohashi S, Ishikawa A et al (2005b) Dendritic cell maturation by CD11c- T cells and Vα24+ natural killer T-cell activation by α-galactosylceramide. Int J Cancer 117: 265–273

    Article  PubMed  CAS  Google Scholar 

  • Kawano T, Cui J, Koezuka Y et al (1997) CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278: 1626–1629

    Article  PubMed  CAS  Google Scholar 

  • Kawano T, Cui J, Koezuka Y et al (1998) Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Vα14 NKT cells. Proc Natl Acad Sci USA 95: 5690–5693

    Article  PubMed  CAS  Google Scholar 

  • Kawano T, Nakayama T, Kamada N et al (1999) Antitumor cytotoxicity mediated by ligand-activated human Vα24 NKT cells. Cancer Res 59: 5102–5105

    PubMed  CAS  Google Scholar 

  • Kobayashi E, Motoki K, Uchida T et al (1995) KRN7000, a novel immunomodulator, and its antitumor activities. Oncol Res 7: 529–534

    PubMed  CAS  Google Scholar 

  • Kunii N, Horiguchi S, Motohashi S et al (2009) Combination therapy of in vitro-expanded natural killer T cells and α-galactosylceramide-pulsed antigen-presenting cells in patients with recurrent head and neck carcinoma. Cancer Sci 100: 1092–1098

    Article  PubMed  CAS  Google Scholar 

  • Metelitsa LS, Wu HW, Wang H et al (2004) Natural killer T cells infiltrate neuroblastomas expressing the chemokine CCL2. J Exp Med 199: 1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Molling JW, Langius JA, Langendijk JA et al (2007) Low levels of circulating invariant natural killer T cells predict poor clinical outcome in patients with head and neck squamous cell carcinoma. J Clin Oncol 25: 862–868

    Article  PubMed  Google Scholar 

  • Morita M, Motoki K, Akimoto K et al (1995) Structure-activity relationship of α-galactosylceramides against B16-bearing mice. J Med Chem 38: 2176–2187

    Article  PubMed  CAS  Google Scholar 

  • Motohashi S, Ishikawa A, Ishikawa E et al (2006) A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 12: 6079–6086

    Article  PubMed  CAS  Google Scholar 

  • Motohashi S, Kobayashi S, Ito T et al (2002) Preserved IFN-γ production of circulating Vα24 NKT cells in primary lung cancer patients. Int J Cancer 102: 159–165

    Article  PubMed  CAS  Google Scholar 

  • Motohashi S, Nagato K, Kunii N et al (2009) A phase I-II study of α-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J Immunol 182: 2492–2501

    Article  PubMed  CAS  Google Scholar 

  • Motohashi S, Nakayama T (2008) Clinical applications of natural killer T cell-based immunotherapy for cancer. Cancer Sci 99: 638–645

    Article  PubMed  CAS  Google Scholar 

  • Motohashi S, Nakayama T (2009) Invariant natural killer T cell-based immunotherapy for cancer. Immunotherapy 1: 73–82

    Article  PubMed  CAS  Google Scholar 

  • Nieda M, Okai M, Tazbirkova A et al (2004) Therapeutic activation of Vα24+Vβ11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103: 383–389

    Article  PubMed  CAS  Google Scholar 

  • Okai M, Nieda M, Tazbirkova A et al (2002) Human peripheral blood Vα24+ Vβ11+ NKT cells expand following administration of α-galactosylceramide-pulsed dendritic cells. Vox Sang 83: 250–253

    Article  PubMed  CAS  Google Scholar 

  • Okita K, Motohashi S, Shinnakasu R et al. A set of genes associated with the IFN-γ response of lung cancer patients undergoing αGalactosylceramide-pulsed dendritic cell therapy. Cacer Sci

    Google Scholar 

  • Rogers PR, Matsumoto A, Naidenko O et al (2004) Expansion of human Vα24+ NKT cells by repeated stimulation with KRN7000. J Immunol Methods 285: 197–214

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10: 909–915

    Article  PubMed  CAS  Google Scholar 

  • Shimizu K, Kurosawa Y, Taniguchi M et al (2007) Cross-presentation of glycolipid from tumor cells loaded with α-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J Exp Med 204: 2641–2653

    Article  PubMed  CAS  Google Scholar 

  • Smyth MJ, Crowe NY, Pellicci DG et al (2002) Sequential production of interferon-γ by NK1.1(+) T cells and natural killer cells is essential for the antimetastatic effect of α-galactosylceramide. Blood 99: 1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Song L, Asgharzadeh S, Salo J et al (2009) Vα24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J Clin Invest 119: 1524–1536

    Article  PubMed  CAS  Google Scholar 

  • Tachibana T, Onodera H, Tsuruyama T et al (2005) Increased intratumor Vα24-positive natural killer T cells: a prognostic factor for primary colorectal carcinomas. Clin Cancer Res 11: 7322–7327

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Okumura K, Smyth MJ (2007) Combination antibody-based cancer immunotherapy. Cancer Sci 98: 1297–1302

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M, Harada M, Kojo S et al (2003a) The regulatory role of Vα14 NKT cells in innate and acquired immune response. Annu Rev Immunol 21: 483–513

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M, Seino K, Nakayama T (2003b) The NKT cell system: bridging innate and acquired immunity. Nat Immunol 4: 1164–1165

    Article  PubMed  CAS  Google Scholar 

  • Toura I, Kawano T, Akutsu Y et al (1999) Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with α-galactosylceramide. J Immunol 163: 2387–2391

    PubMed  CAS  Google Scholar 

  • Uchida T, Horiguchi S, Tanaka Y et al (2008) Phase I study of α-galactosylceramide-pulsed antigen presenting cells administration to the nasal submucosa in unresectable or recurrent head and neck cancer. Cancer Immunol Immunother 57: 337–345

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Global COE Program (Global Center for Education and Research in Immune System Regulation and Treatment), and City Area Program (Kazusa/Chiba Area), Cancer Translational Research Project and Grants-in-Aid: for Scientific Research on Priority Areas #17016010; Scientific Research (B) #21390147, Scientific Research (C) #21591808, MEXT (Japan), the Ministry of Health, Labor and Welfare (Japan), RIKEN Research Cluster for Innovation, Uehara Memorial Foundation, Mochida Foundation, Yasuda Medical Foundation, Astellas Foundation and Sagawa Foundation, Mitsui life Social Welfare Foundation. The GMP-grade α-GalCer was provided by Kyowa Hakko Kirin Co. The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichiro Motohashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Motohashi, S., Okamoto, Y., Nakayama, T. (2012). Clinical Trials of Invariant Natural Killer T Cell-Based Immunotherapy for Cancer. In: Terabe, M., Berzofsky, J. (eds) Natural Killer T cells. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0613-6_11

Download citation

Publish with us

Policies and ethics