Skip to main content

Micro- and Nanoemulsions (Controlled Release Parenteral Drug Delivery Systems)

  • Chapter
  • First Online:
Long Acting Injections and Implants

Abstract

Parenteral emulsions may be utilized to overcome major formulation challenges such as solubilization of poorly aqueous-soluble drugs and/or protection of drugs susceptible to hydrolysis. In addition, they can be used for the purposes of controlled and sustained drug release, drug targeting, and/or reduction of toxic effects to sensitive tissues. Emulsions are thermodynamically unstable and do not form spontaneously; however, emulsion stability can be substantially improved using suitable emulsifiers and viscosity enhancing agents. Drug release rates from emulsion systems are determined by both the carrier and the drug characteristics. It is not an easy task to characterize in vitro drug release from emulsions due to the physical obstacles associated with separation of the dispersed and continuous phases; however, various techniques have been successfully used. This chapter ­provides an overview of the physicochemical properties, methods of preparation, stability, and application of emulsion formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marti-Mestres G, Nielloud F (2002) Emulsions in health care; aplications – an overview. J Dispersion Sci Technol 23(1–3):419–439

    CAS  Google Scholar 

  2. Becher SE, Schick MJ (1987) Macroemulsions. In: Schick MJ (ed) Surfactant science series, nonionic surfactants – physical chemistry, vol 23. Marcel Dekker, New York, pp 435–491

    Google Scholar 

  3. Friberg SE, Goldsmith LB, Hilton ML (1988) Theory of emulsions. In: Lieberman HA, Rieger MM, Banker GS (eds) Pharmaceutical dosage forms: disperse systems. Marcel Dekker, New York, pp 49–91

    Google Scholar 

  4. Junginger HE (1992) In: Sjoblom J. Emulsions – a fundamental and practical approach, NATO ASI Series, Series C, Kluger (ed.) v. 363, p 189

    Google Scholar 

  5. Collins-Gold LC, Lyons RT, Bartholow LC (1990) Parenteral emulsions for drug delivery. Adv Drug Deliv Rev 5:189–208

    Article  CAS  Google Scholar 

  6. Davis SS, Hadgraft J, Palin KJ (1985) Medical and pharmaceutical applications of emulsions. In: Becher P (ed) Encyclopedia of emulsion technology. Dekker, New York, pp 159–238

    Google Scholar 

  7. Klang S, Benita S (1998) Design and evaluation of submicron emulsions as colloidal drug carriers for intravenous administration. In: Benita S (ed) Submicron emulsions in drug targeting and delivery. Harwood Academic Publishers, Amsterdam, pp 127–131

    Google Scholar 

  8. Bruck SD (1983) Controlled drug delivery, basic concepts, vol 1. CRC, Boca Raton, p 187

    Google Scholar 

  9. Chidambaram N, Burgess DJ (2005) Emulsions: design and manufacturing. In: Burgess DJ (ed) Drug and the pharmaceutical sciences – injectable dispersed systems: formulation, ­processing and performance, vol 149. Taylor & Francis, Boca Raton, pp 213–293

    Google Scholar 

  10. Singh M, Ravin LJ (1986) Parenteral emulsions as drug carrier systems. J Parenteral Sci Tech 40(1):34–41

    CAS  Google Scholar 

  11. Benita S, Levy MY (1993) Submicron emulsions as colloidal drug for intravenous ­administration: comprehensive physicochemical characterization. J Pharm Sci 82(11):1069–1079

    Article  PubMed  CAS  Google Scholar 

  12. Morrison ID, Ross S (2002) Emulsions. colloidal dispersions – suspensions, emulsions and foams. Wiley, New York, pp 420–455

    Google Scholar 

  13. Sznitowska M, Janicki S, Dabrowska E, Zurowska-Pyczkowska K (2001) Submicron emulsions as drug carriers: Studies on destabilization potential of various drugs. Eur J Pharm Sci 12:175–179

    Article  PubMed  CAS  Google Scholar 

  14. Tamilvanan S (2004) Oil-in-water lipid emulsions: implications for parenteral and ocular delivering systems. Prog Lipid Res 43:489–533

    Article  PubMed  CAS  Google Scholar 

  15. Hora M, Tuck S (2000) Emulsions for sustained drug delivery. In: Senior J, Radomsky M (eds) Sustained release injectable products. Interpharm, Denver, pp 109–136

    Google Scholar 

  16. Capek I (2004) Degradation of kinetically-stable o/w emulsions. Adv Colloid Interface Sci 107:125–155

    Article  PubMed  CAS  Google Scholar 

  17. Holmberg K, Jönsson B, Kronberg B, Lindmam B (2002) Surfactants and polymers in aqueous solution, 2nd edn. Wiley, New York, pp 451–471

    Book  Google Scholar 

  18. Marszal L (1987) HLB of nonionic surfactants: PIT and EPI methods. In: Schick MJ (ed) Surfactant science series, nonionic surfactants – physical chemistry, vol 23. Marcel Dekker Inc, New York, pp 493–547

    Google Scholar 

  19. Fernandez P, André V, Rieger J, Kühmle A (2004) Nano-emulsions formation by emulsion phase inversion. Colloids Surf A 251:53–58

    Article  CAS  Google Scholar 

  20. Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nanoemulsions. Adv Colloid Interface Sci 109:303–318

    Article  Google Scholar 

  21. Burgess DJ, Sahin NO (1997) Interfacial rheological and tension properties of protein films. J Colloid Interface Sci 189:74–82

    Article  CAS  Google Scholar 

  22. Jiao J, Rhodes DG, Burgess DJ (2002) Multiple emulsion stability: pressure balance and interfacial film strength. J Colloid Interface Sci 250:444–450

    Article  PubMed  CAS  Google Scholar 

  23. Jiao J, Burgess DJ (2003) Rheology and stability of water-in-oil-in-water multiple emulsion containing Span83 and Tween80. AAPS J 5(1):62–73

    CAS  Google Scholar 

  24. Morais JM, Rocha-Filho PA, Burgess DJ (2009) Influence of phase inversion on the formation and stability of one-step multiple emulsions. Langmuir 25(14):7954–7961

    Article  PubMed  CAS  Google Scholar 

  25. Opawale FO, Burgess DJ (1998) Influence of interfacial rheological properties of mixed emulsifier films on the stability of water-in-oil-in-water emulsions. J Pharm Pharmacol 50:965–973

    Article  PubMed  CAS  Google Scholar 

  26. Opawale FO, Burgess DJ (1998) Influence of interfacial properties of lipophilic surfactants on water-in-oil emulsion. J Colloid Interface Sci 197:142–150

    Article  PubMed  CAS  Google Scholar 

  27. Robins MM, Hibberd DJ (1998) Emulsion flocculation and creaming. In: Binks BP (ed) Modern aspects of emulsion science. Royal Society of Chemistry, Cambridge, pp 115–144

    Chapter  Google Scholar 

  28. Schramm LL, Stasiuk EN, Marangoni DG (2003) Surfactants and their applications. Annu Rep Prog Chem Sect C 99:3–48

    Article  CAS  Google Scholar 

  29. Driscoll DF, Bistrian BR, Demmelmair H, Koletzko B (2008) Pharmaceutical and clinical aspects of parenteral lipid emulsions in neonatology. Clin Nutr 27:497–503

    Article  PubMed  CAS  Google Scholar 

  30. Oussoren C, Talsma H, Zuidema J, Kadir F (2005) Biopharmaceutical principles of injectable dispersed systems. In: Burgess DJ (ed) Drug and the pharmaceutical sciences – injectable dispersed systems. Formulation, processing and performance, vol 149. Taylor & Francis, Boca Raton, pp 39–76

    Chapter  Google Scholar 

  31. Sonneville-Aubrun O, Simonnet J-T, L’Alloret F (2004) Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interface Sci 108–109:145–149

    Article  PubMed  Google Scholar 

  32. Date AA, Nagarsenker MS (2008) Parenteral microemulsions: an overview. Int J Pharm 355:19–30

    Article  PubMed  CAS  Google Scholar 

  33. Tije AJ, Verweij J, Loos WJ, Spareboom A (2003) Pharmacological effects of formulation vehicles implications for cancer chemotherapy. Clin Pharmacokinet 42:665–685

    Article  PubMed  Google Scholar 

  34. Söderlind E, Wollbratt M, Corswant CV (2003) The usefulness of sugar surfactants as solubilizing agents in parenteral formulations. Int J Pharm 252:61–71

    Article  PubMed  Google Scholar 

  35. Ott G, Singh M, Kazzaz J, Briones M, Soenawan E, Ugozzoli M (2002) A cationic sub-micron emulsion (MF59/DOTAP) is an effective delivery system for DNA vaccines. J Control Release 79:1–5

    Article  PubMed  CAS  Google Scholar 

  36. Florence AT, Whitehill D (1982) The formulation and stability of multiple emulsions. Int J Pharm 11:277–308

    Article  CAS  Google Scholar 

  37. Garti N (1997) Double emulsions – scope, limitations and new achievements. Colloids Surf A 123–124:233–246

    Article  Google Scholar 

  38. Matsumoto S (1983) Development of W/O/W – type dispersion during phase inversion of concentrated W/O emulsions. J Colloid Interface Sci 94:362–368

    Article  CAS  Google Scholar 

  39. Carlloti ME, Gallarate M, Sapino S, Ugazio E (2005) W/O/W multiple emulsions for dermatological and cosmetic use, obtained with ethylene oxide free emulsifiers. J Dispersion Sci Technol 26(2):83–192

    Google Scholar 

  40. Nakhare S, Vyas SP (1996) Preparation and characterization of multiple emulsions based ­systems for controlled diclofenac sodium release. J Microencapsul 13(3):281–292

    Article  PubMed  CAS  Google Scholar 

  41. Vasudevan TV, Naser MS (2002) Some aspects of stability of multiple emulsions in personal cleansing systems. J Colloid Interface Sci 256:208–215

    Article  PubMed  CAS  Google Scholar 

  42. Yu S-C, Bochot A, Le Bas G, Chéron M, Mahuteau J, Grossiord J-L, Seiller M, Duchêne D (2003) Effect of camphor/cyclodextrin complexation on the stability of O/W/O multiple ­emulsions. Int J Pharm 261:1–8

    Article  PubMed  CAS  Google Scholar 

  43. Fox C (1986) An introduction to multiple emulsions. Cosmet Toiletries 101(11):101–112

    CAS  Google Scholar 

  44. Oh C, Park J-H, Shin S-I, S-G OH (2004) O/W/O multiple emulsions via one-step ­emulsification process. J Dispersion Sci Technol 25(1):53–62

    Article  CAS  Google Scholar 

  45. Cole ML, Whateley TL (1997) Release rate profiles of theophylline and insulin from stable multiple w/o/w emulsions. J Control Release 49:51–58

    Article  CAS  Google Scholar 

  46. Ceglie A, Das KP, Lindman B (1987) Effect of oil on the microscopic structure in four ­component cosurfactants microemulsions. Colloids Surf 28:29–40

    Article  CAS  Google Scholar 

  47. Wennerstrom H, Soderman O, Olsson U, Lindman B (1997) Macroemulsions versus ­microemulsions. Colloids Surf A 123–124:13–26

    Article  Google Scholar 

  48. Attwood D (1994) Microemulsions. In: Kreuter J (ed) Colloidal drug delivery systems. Marcel Dekker, New York, pp 31–71

    Google Scholar 

  49. Lam AC, Falk NA, Schechter RS (1987) The thermodynamics of microemulsions. J Colloid Interface Sci 120(1):30–41

    Article  CAS  Google Scholar 

  50. He L, Wang G, Zhang Q (2003) An alternative paclitaxel microemulsion formulation: ­hypersensitivity evaluation and pharmacokinetic profile. Int J Pharm 250:45–50

    Article  PubMed  CAS  Google Scholar 

  51. Moreno MA, Frutos P, Ballesteros MP (2001) Lyophilized lecithin based oil–water microemulsions as a new and low toxic delivery system for amphotericin B. Pharm Res 18:344–351

    Article  PubMed  CAS  Google Scholar 

  52. Wang J-J, Sung KC, Oliver Y-PH, Chih-Hui Y, Jia-Yo F (2006) Submicron lipid emulsion as a drug delivery system for nalbuphine and its prodrugs. J Control Release 115:140–149

    Article  PubMed  CAS  Google Scholar 

  53. Floyd AG (1999) Top ten considerations in the development of parenteral emulsions. Pharm Sci Technol Today 2(4):134–143

    Article  CAS  Google Scholar 

  54. Hansrani PK, Davis SS, Groves MJ (1983) The preparation and properties of sterile ­intravenous emulsions. J Parenter Sci Technol 37:145–150

    PubMed  CAS  Google Scholar 

  55. Brooks BW, Richmond H (1991) Dynamics of liquid-liquid inversion using non-ionic ­surfactants. Colloids Surf 58:131–148

    Article  CAS  Google Scholar 

  56. Salager JL, Marquéz L, Peña AA, Rondón M, Silva F, Tyrode E (2000) Current phenomenological know-how and modeling of emulsion inversion. Ind Eng Chem Res 39:2665–2675

    Article  CAS  Google Scholar 

  57. Saito H, Shinoda K (1967) The solubilization of hydrocarbons in aqueous solution of nonionic surfactants. J Colloid Interface Sci 24:10

    Article  CAS  Google Scholar 

  58. Shinoda K, Friberg SE (1986) Factors affecting the phase inversion temperature in an ­emulsion. Emulsions and solubilization. Wiley, New York, pp 96–123

    Google Scholar 

  59. Salager JL, Forgiarini A, Marquéz L, Peña A, Pizzino A, Rodriguez MP, González MR (2004) Using emulsion inversion in industrial process. Adv Colloid Interface Sci 259:108–109

    Google Scholar 

  60. Vaessen GEJ, Stein HN (1995) The applicability of catastrophe theory to emulsion phase inversion. J Colloid Interface Sci 176:378–387

    Article  CAS  Google Scholar 

  61. Zerfa M, Sajjadi S, Brooks BW (2001) Phase behaviour of polymer emulsions during the phase inversion process in the presence of non-ionic surfactants. Colloids Surf A 178:41–48

    Article  CAS  Google Scholar 

  62. Bouchama F, Van Aken GA, Autin AJE, Koper GJM (2003) On the mechanism of catastrophic phase inversion in emulsions. Colloids Surf A 231:11–17

    Article  CAS  Google Scholar 

  63. Devani MJ, Ashfird M, Craig DQM (2005) The development and characterization of ­triglyceride-based “spontaneous” multiple emulsions. Int J Pharm 300:76–88

    Article  PubMed  CAS  Google Scholar 

  64. Sajjadi S, Jahanzad F, Yianneskis M, Brooks BW (2003) Phase inversion in abnormal O/W/O emulsions: effect of surfactant hydrophilic-lipophilic balance. Ind Eng Chem Res 42:3571–3577

    Article  CAS  Google Scholar 

  65. Morais JM, Santos ODH, Nunes JRL, Zanatta CF, Rocha-Filho PA (2008) W/O/W multiple emulsion obtained by one-step emulsification method and evaluation of the involved variables. J Dispersion Sci Technol 29(1):63–69

    Article  CAS  Google Scholar 

  66. Förster T, Von Rybinski W, Wadle A (1995) Influence of microemulsion phases on the preparation of fine-disperse emulsions. Adv Colloid Interface Sci 58:119–149

    Article  Google Scholar 

  67. Schulman JH, Stoeckenius W, Prince LM (1959) Mechanism of formation and structure of micro emulsions by electron microscopy. J Phys Chem 63(10):1677–1680

    Article  CAS  Google Scholar 

  68. Kim C (2000) Controlled release dosage form design. Technomic Publishing CO, Inc, Lancaster-Basel, p 301

    Google Scholar 

  69. Kydonieus AF (1980) Controlled release technologies: methods, theory, and applications, vol 1. CRC, Boca Raton

    Google Scholar 

  70. Washington C (1990) Drug release from microdisperse systems: a critical review. Int J Pharm 58:1–12

    Article  CAS  Google Scholar 

  71. Brodin AF, Kavaliunas PR, Frank SG (1978) Prolonged drug release from multiple emulsions. Acta Pharmaceutica Suecica 15(1):111–118

    PubMed  CAS  Google Scholar 

  72. Burbage AS, Davis SS (1980) The characterization of multiple emulsions using a radiotracer technique. J Pharm Pharmacol 31(6) Supplement

    Google Scholar 

  73. Laugel C, Baillet A, Youenang Piemi MP, Marty JP, Ferrier D (1998) Oil-water-oil multiple emulsion for prolonged delivery of hydrocortisone after topical application: comparison with simple emulsions. Int J Pharm 160:109–117

    Article  Google Scholar 

  74. Klang SH, Parnas M, Benita S (1998) Emulsions as drug carriers – possibilities, limitations and future perspectives. In: Müller RH, Benita S, Böhm B (eds) Emulsions and nanosuspensions for the formulation of poorly soluble drugs. Medpharm Scientific Publishers, Stuttgart, pp 31–65

    Google Scholar 

  75. Muller RH (1991) Colloidal carriers for controlled drug delivery and targeting: Modification, characterization and in vivo distribution. Wiss. Ver.-Ges., CRS Press, Inc., Stuttgart

    Google Scholar 

  76. Owais M, Gupta CM (2005) Targeted drug delivery to macrophages in parasitic infections. Curr Drug Deliv 2:311–318

    Article  PubMed  CAS  Google Scholar 

  77. Poste G, Kirsh R (1983) Site-specific (targeted) drug delivery in cancer chemotherapy. Biotechnology 1:869–878

    Article  CAS  Google Scholar 

  78. Greenwald RB, Choe YH, McGuire J, Conover CD (2003) Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev 55:217–250

    Article  PubMed  CAS  Google Scholar 

  79. Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55(3):403–419

    Article  PubMed  CAS  Google Scholar 

  80. Koster VS, Kuks PFM, Lang R, Talsma H (1996) Particle size in parenteral fat emulsions, what are the true limitations? Int J Pharm 134:235–238

    Article  CAS  Google Scholar 

  81. Roth B, Fkelund M, Fan BG, Hagerstrand I, Nilsson-Ehie P (1996) Lipid deposition in Kupffer cells after parenteral fat nutrition in rats: a biochemical and structural study. Intensive Care Med 22:1224–1231

    Article  PubMed  CAS  Google Scholar 

  82. Schwarz C, Mehnert W, Lucks JS, Moiler RH (1994) Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J Control Release 30:83–96

    Article  CAS  Google Scholar 

  83. Burnham WR, Hansrani PK, Knott CE, Cook CA, Davis SS (1983) Stability of a fat emulsion based intravenous feeding mixture. Int J Pharm 13:9–22

    Article  Google Scholar 

  84. Washington C, Evans K (1995) Release rate measurements of model hydrophobic solutes from submicron triglyceride emulsions. J Control Release 33:383–390

    Article  CAS  Google Scholar 

  85. Armoury N, Fessi H, Devissauget JP, Puisieux F, Benita S (1990) In vitro release kinetic ­pattern of indomethacin from poly (d.l-lactic) nanocapsules. J Pharm Sci 79:763–767

    Article  Google Scholar 

  86. Friedman D, Benita S (1987) A mathematical model for drug release from o/w emulsions: Application to controlled release morphine emulsions. Drug Dev Ind Pharm 13:2067–2086

    Article  CAS  Google Scholar 

  87. Lostritto RT, Goei L, Silvestri SL (1987) Theoretical considerations of drug release from ­submicron oil-in-water emulsions. J Parenter Sci Technol 41:215–219

    Google Scholar 

  88. Bhardwaj U, Burgess DJ (2010) A novel USP apparatus 4 based release testing method for dispersed systems. Int J Pharm 388:287–294

    Article  PubMed  CAS  Google Scholar 

  89. Chibambaram N, Burgess DJ (1999) A novel in vitro release method for submicron-sized dispersed systems. AAPS Pharmsci 1(3):1–9

    Article  Google Scholar 

  90. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL (1997) The mechanism of uptake of biodegradable microspheres in caco-2 cells is size dependent. Pharm Res 14:1568–1573

    Article  PubMed  CAS  Google Scholar 

  91. Chattaraj SC, Kanfer I (1995) Release of acyclovir from semi-solid dosage forms: a ­semi-automated procedure using a simple plexiglass flow-through cell. Int J Pharm 125:215–222

    Article  CAS  Google Scholar 

  92. Liebenberg W, Engelbrecht E, Wessels A, Devarakonda B, Yang W, De Villiers MM (2004) A comparative study of the release of active ingredients from semisolid cosmeceuticals measured with franz, enhancer or flow-through cell diffusion apparatus. J Food Drug Anal 12(1):19–28

    CAS  Google Scholar 

  93. Food and Drug Administration FDA (2004) Criteria for safety and efficacy evaluation of ­oxygen therapeutics as red blood cell substitutes (Draft Guidance)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane J. Burgess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Controlled Release Society

About this chapter

Cite this chapter

Morais, J.M., Burgess, D.J. (2012). Micro- and Nanoemulsions (Controlled Release Parenteral Drug Delivery Systems). In: Wright, J., Burgess, D. (eds) Long Acting Injections and Implants. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0554-2_12

Download citation

Publish with us

Policies and ethics