Skip to main content

Graphene Growth by CVD Methods

  • Chapter
  • First Online:
Graphene Nanoelectronics

Abstract

In this chapter, the production of graphene by chemical vapor deposition (CVD) is discussed. CVD is widely used in the microelectronics industry in processes involving the deposition of thin films of various materials. The deposition is made from precursors in the gas phase which adsorb on the target surface producing a condensed phase of a specific material. The attractiveness of the generation of graphene by CVD is based on the fact that this technique allows for scalability as well as low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Wintterlin and M. L. Bocquet. Graphene on metal surfaces. Surface Science, 603(10–12):1841–1852, 2009.

    Article  Google Scholar 

  2. A. E. B. Presland and P. L. Walker. Growth of single-crystal graphite by pyrolysis of acetylene over metals. Carbon, 7(1):1–4, 1969.

    Article  Google Scholar 

  3. Alexander E. Karu and Michael Beer. Pyrolytic formation of highly crystalline graphite films. Journal of Applied Physics, 37(5):2179–2181, 1966.

    Article  Google Scholar 

  4. P. E. I. Ching Li. Preparation of single-crystal graphite from melts. Nature, 192(4805):864–865, 1961.

    Article  Google Scholar 

  5. I. Minko and I. Einbinder. Dendritic growth of graphite from melts. Nature, 194(4830):765–766, 1962.

    Article  Google Scholar 

  6. S. B. Austerman, S. M. Myron, and J. W. Wagner. Growth and characterization of graphite single crystals. Carbon, 5(6), 1967.

    Google Scholar 

  7. Peter W. Sutter, Jan-Ingo Flege, and Eli A. Sutter. Epitaxial Graphene on Ruthenium. Nat Mater, 7(5):406–411, 2008.

    Article  Google Scholar 

  8. Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, KS Kim, Jong Ahn, Philip Kim, Jae Choi, Byung Hee Hong. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230):706–710, 2009.

    Article  Google Scholar 

  9. Qingkai Yu, Jie Lian, Sujitra Siriponglert, Hao Li, Yong P. Chen, and Shin-Shem Pei. Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 93(11):113103–3, 2008.

    Article  Google Scholar 

  10. L. G. De Arco, Zhang Yi, A. Kumar, and Zhou Chongwu. Synthesis, transfer, and devices of single- and few-layer graphene by chemical vapor deposition. Nanotechnology, IEEE Transactions on, 8(2):135–138, 2009.

    Google Scholar 

  11. Alfonso Reina, Xiaoting Jia, John Ho, Daniel Nezich, Hyungbin Son, Vladimir Bulovic, Mildred S. Dresselhaus, and Jing Kong. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9(1):30–35, 2009.

    Article  Google Scholar 

  12. E. Sutter, P. Albrecht, and P. Sutter. Graphene growth on polycrystalline Ru thin films. Applied Physics Letters, 95(13):133109, 2009.

    Article  Google Scholar 

  13. P. W. Sutter, P. M. Albrecht, and E. A. Sutter. Graphene growth on epitaxial Ru thin films on sapphire. Applied Physics Letters, 97(21):213101, 2010.

    Article  Google Scholar 

  14. S. D. Robertson. Carbon Formation from Methane Pyrolysis over some Tran-sition Metal surfaces-II. Manner of carbon and graphite formation. Carbon, 10(2):221–229, 1972.

    Article  Google Scholar 

  15. Alfonso Reina, Stefan Thiele, Xiaoting Jia, Sreekar Bhaviripudi, Mildred Dressel-haus, Juergen Schaefer, and Jing Kong. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Research, 2(6): 509–516, 2009.

    Article  Google Scholar 

  16. Stefan Thiele, Alfonso Reina, Paul Healey, Jakub Kedzierski, Peter Wyatt, Pei-Lan Hsu, Craig Keast, Juergen Schaefer, and Jing Kong. Engineering polycrys-talline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Nanotechnology, 21(1):015601, 2009.

    Google Scholar 

  17. B. C. Banerjee, T. J. Hirt, and P. L. Walker. Pyrolytic carbon formation from carbon suboxide. Nature, 192(4801):450–451, 1961.

    Article  Google Scholar 

  18. A. R. Ubbelohde, D. A. Young, and A. W. Moore. Annealing of pyrolytic graphite under pressure. Nature, 198(4886):1192–1193, 1963.

    Article  Google Scholar 

  19. F. J. Derbyshire, A. E. B. Presland, and D. L. Trimm. The formation of graphite films by precipitation of carbon from nickel foils. Carbon, 10(1):114, 1972.

    Article  Google Scholar 

  20. F. J. Derbyshire, A. E. B. Presland, and D. L. Trimm. Graphite formation by the dissolution-precipitation of carbon in cobalt, nickel and iron. Carbon, 13(2):111–113, 1975.

    Article  Google Scholar 

  21. Masako Yudasaka, Rie Kikuchi, Takeo Matsui, Yoshimasa Ohki, Mark Baxen-dale, Susumu Yoshimura, and Etsuro Ota. Graphite formation on Ni film by chemical vapor deposition. Thin Solid Films, 280(1–2):117–123, 1996.

    Article  Google Scholar 

  22. Yudasaka Masako, Kikuchi Rie, Ohki Yoshimasa, and Yoshimura Susumu. Graphite growth influenced by crystallographic faces of Ni films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, 16(4):2463–2465, 1998.

    Article  Google Scholar 

  23. A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 45(10):2017–2021, 2007.

    Article  Google Scholar 

  24. M. Yudasaka, R. Kikuchi, T. Matsui, H. Kamo, Y. Ohki, S. Yoshimura, and E. Ota. Graphite thin film formation by chemical vapor deposition. Applied Physics Letters, 64(7):842–844, 1994.

    Article  Google Scholar 

  25. A. Nagashima, N. Tejima, and C. Oshima. Electronic states of the pristine and alkali-metal-intercalated monolayer graphite/Ni(111) systems. Physical Review B, 50(23):17487, 1994.

    Article  Google Scholar 

  26. Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai, and C. Oshima. Atomic structure of monolayer graphite formed on Ni(111). Surface Science, 374(1–3):61–64, 1997.

    Article  Google Scholar 

  27. D. Farias, A. M. Shikin, K. H. Rieder, and S. Dedkov Yu. Synthesis of a weakly bonded graphite monolayer on Ni(111) by intercalation of silver. Journal of Physics: Condensed Matter, (43):8453, 1999.

    Article  Google Scholar 

  28. Elena Loginova, Norman C. Bartelt, Peter J. Feibelman, and Kevin F. McCarty. Evidence for graphene growth by c cluster attachment. New Journal of Physics, 10(9):093026, 2008.

    Article  Google Scholar 

  29. Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kom, Junghyo Na, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, and Rodney S. Ruoff. Large-Area synthesis of high-quality and uniform graphene films on Copper foils. Science 324 (5932): 1312–1314, 2009.

    Article  Google Scholar 

  30. Xuesong Li, Weiwei Cai, Luigi Colombo, and Rodney S. Ruoff. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Letters, 9(12):4268–4272, 2009.

    Article  Google Scholar 

  31. Liying Jiao, Ben Fan, Xiaojun Xian, Zhongyun Wu, Jin Zhang, and Zhongfan Liu. Creation of nanostructures with poly(methyl methacrylate)-mediated nan-otransfer printing. Journal of the American Chemical Society, 130(38):12612–12613, 2008.

    Article  Google Scholar 

  32. Sukang Bae, Hyeongkeun Kim, Youngbin Lee, Xiangfan Xu, Jae-Sung Park, Yi Zheng, Jayakumar Balakrishnan, Tian Lei, Hye Ri Kim, Young Il Song, Young-Jin Kim, Kwang S. Kim, Barbaros Ozyilmaz, Jong-Hyun Ahn, Byung Hee Hong, and Sumio Iijima. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano, 5(8):574–578, 2010.

    Article  Google Scholar 

  33. Mark P. Levendorf, Carlos S. Ruiz-Vargas, Shivank Garg, and Jiwoong Park. Transfer-free batch fabrication of single layer graphene transistors. Nano Letters, 9(12):4479–4483, 2009.

    Article  Google Scholar 

  34. Xuesong Li, Carl W. Magnuson, Archana Venugopal, Jinho An, Ji Won Suk, Boyang Han, Mark Borysiak, Weiwei Cai, Aruna Velamakanni, Yanwu Zhu, Lianfeng Fu, Eric M. Vogel, Edgar Voelkl, Luigi Colombo, and Rodney S. Ruo. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Letters, 10(11):4328–4334, 2010.

    Article  Google Scholar 

  35. Qingkai Yu, Luis A. Jauregui, Wei Wu, Robert Colby, Jifa Tian, Zhihua Su, Helin Cao, Zhihong Liu, Deepak Pandey, Dongguang Wei, Ting Fung Chung, Peng Peng, Nathan P. Guisinger, Eric A. Stach, Jiming Bao, Shin-Shem Pei & Yong P. Chen. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Materials, 10: 443–449. 2011.

    Article  Google Scholar 

  36. Sreekar Bhaviripudi, Xiaoting Jia, Mildred S. Dresselhaus, and Jing Kong. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Letters, 10(10):4128–4133, 2010.

    Article  Google Scholar 

  37. Melinda Y. Han, Barbaros Ozyilmaz, Yuanbo Zhang, and Philip Kim. Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 98(20):206805, 2007.

    Article  Google Scholar 

  38. Yu-Ming Lin, Vasili Perebeinos, Zhihong Chen, and Phaedon Avouris. Electrical observation of subband formation in graphene nanoribbons. Physical Review B, 78(16):161409, 2008.

    Article  Google Scholar 

  39. S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D. H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara. Substrate-induced bandgap opening in epitaxial graphene. Nat Mater, 6(10):770–775, 2007.

    Article  Google Scholar 

  40. Yuanbo Zhang, Tsung-Ta Tang, Caglar Girit, Zhao Hao, Michael C. Martin, Alex Zettl, Michael F. Crommie, Y. Ron Shen, and Feng Wang. Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 459(7248):820–823, 2009.

    Article  Google Scholar 

  41. Seunghyun Lee, Kyunghoon Lee, and Zhaohui Zhong. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Letters, 10(11):4702–4707, 2010.

    Article  Google Scholar 

  42. Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, and Rodney S. Ruo. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932):1312–1314, 2009.

    Article  Google Scholar 

  43. Takayuki Iwasaki, Hye Jin Park, Mitsuharu Konuma, Dong Su Lee, Jurgen H. Smet, and Ulrich Starke. Long-range ordered single-crystal graphene on high-quality heteroepitaxial Ni thin films grown on MgO(111). Nano Letters 11 (1): 79–84, 2011.

    Article  Google Scholar 

  44. Kongara M. Reddy, Andrew D. Gledhill, Chun-Hu Chen, Julie M. Drexler, and Nitin P. Padture. High quality, transferable graphene grown on single crystal Cu(111) thin films on basal-plane sapphire. Applied Physics Letters 98: 113117, 2011.

    Google Scholar 

  45. Li Gao, Je rey R. Guest, and Nathan P. Guisinger. Epitaxial graphene on Cu(111). Nano Letters, 10(9):3512–3516, 2010.

    Google Scholar 

  46. M. Eizenberg and J. M. Blakely. Carbon monolayer phase condensation on Ni (111). Surface Science, 82; 228–236, 1979.

    Google Scholar 

  47. W.W. Dunn, R.B. McLellan, and W.A. Oates. Segregation isosteres for carbon at the (100) surface of nickel. Trans. AIME, 242:2129, 1968.

    Google Scholar 

  48. Archana Venugopal-Eric M. Vogel Rodney S. Ruo Luigi Colombo Xuesong Li, Carl W. Magnuson. Large domain graphene. arXiv:1010.3903v1, 2010.

    Google Scholar 

  49. Chae Seung Jin, Gne Fethullah, scedil, Kim Ki Kang, Kim Eun Sung, Han Gang Hee, Kim Soo Min, Shin Hyeon-Jin, Yoon Seon-Mi, Choi Jae-Young, Park Min Ho, Yang Cheol Woong, Pribat Didier, and Lee Young Hee. Synthesis of large-area graphene layers on poly-Nickel substrate by chemical vapor deposition: Wrinkle formation. Advanced Materials, 21(22):2328–2333, 2009.

    Google Scholar 

  50. Lianchang Zhang, Zhiwen Shi, Yi Wang, Rong Yang, Dongxia Shi, and Guangyu Zhang. Catalyst-free growth of nanographene films on various substrates. Nano Research 4(3): 315–321, 2011.

    Article  Google Scholar 

  51. Mark H. Rummeli, Alicja Bachmatiuk, Andrew Scott, Felix Borrnert, Jamie H. Warner, Volker Ho man, Jarrn-Horng Lin, Gianaurelio Cuniberti, and Bernd Buchner. Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano, 4(7): 4206–4210, 2010.

    Google Scholar 

  52. Nai Gui Shang, Pagona Papakonstantinou, Martin McMullan, Ming Chu, Artemis Stamboulis, Alessandro Potenza, Sarnjeet S. Dhesi, and Helder Marchetto. Catalyst-free efficient growth, orientation and biosensing proper-ties of multilayer graphene nano flake films with sharp edge planes. Advanced Functional Materials, 18(21):3506–3514, 2008.

    Google Scholar 

  53. J. J. Wang, M. Y. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, B. C. Holloway, and V. P. Mammana. Free-standing subnanometer graphite sheets. Applied Physics Letters, 85(7):1265–1267, 2004.

    Article  Google Scholar 

  54. Albert Dato, Velimir Radmilovic, Zonghoon Lee, Jonathan Phillips, and Michael Frenklach. Substrate-free gas-phase synthesis of graphene sheets. Nano Letters, 8(7):2012–2016, 2008.

    Article  Google Scholar 

  55. Xianbao Wang, Haijun You, Fangming Liu, Mingjian Li, Li Wan, Shaoqing Li, Qin Li, Yang Xu, Rong Tian, Ziyong Yu, Dong Xiang, and Jing Cheng. Large-scale synthesis of few-layered graphene using CVD. Chemical Vapor Deposition, 15(1–3):53–56, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Reina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reina, A., Kong, J. (2012). Graphene Growth by CVD Methods. In: Murali, R. (eds) Graphene Nanoelectronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0548-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0548-1_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0547-4

  • Online ISBN: 978-1-4614-0548-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics