Skip to main content

Abstract

Invariant Natural Killer T (iNKT) cells constitute an innate-like lymphocyte population endowed with powerful immunomodulatory functions. Unlike conventional T cells, iNKT cells predominantly express a conserved semi-invariant T cell receptor (TCR), Vα14-Jα18/Vβ2, 7, 8 in mice and Vα24-Jα18/Vβ11 in humans. These canonical TCRs in both species do not recognize peptides, but glycosphingolipid (GSL) patterns presented by CD1d on antigen presenting cells (APCs). The natural mechanisms for iNKT cell activation were unclear prior to the recent identification of their endogenous and exogenous GSL ligands.

Microbes can employ two alternative strategies for iNKT cell activation as exemplarily shown here for Gram-negative bacteria: (a) recognition of endogenous GSLs – by-products of the complex mammalian GSL metabolic pathways – and the presence of interleukin-12 (IL-12), triggered by Toll-like receptor (TLR) signaling of infected APCs, are required for the early secretion of IFN- g by iNKT cells in response to Gram-negative, LPS-positive bacteria. Whereas iNKT cells are secondary to APC-mediated effects in infections with these bacteria, (b) iNKT cells accelerate the clearance of Gram-negative LPS-negative alphaproteobacteria due to the cognate recognition of GSLs in the cell wall of these alphaproteobacteria. Thus, the iNKT cell population represents a major innate recognition pathway for these LPS-negative, GSL-positive alphaproteobacteria that senses infection at sites where iNKT cells accumulate, such as the liver. In this context, iNKT cell activation upon microbial encounter may not only contribute to bacterial clearance, but may be even deleterious for the host, providing innate signals that break peripheral tolerance and unleash autoimmune effector cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbari, O., P. Stock, et al. (2003). “Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity.” Nat Med 9(5): 582–8.

    Article  PubMed  CAS  Google Scholar 

  • Amprey, J. L., J. S. Im, et al. (2004). “A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan.” J Exp Med 200(7): 895–904.

    Article  PubMed  CAS  Google Scholar 

  • Barbeau, J., R. Tanguay, et al. (1996). “Multiparametric analysis of waterline contamination in dental units.” Appl Environ Microbiol 62(11): 3954–9.

    PubMed  CAS  Google Scholar 

  • Barral, D. C. and M. B. Brenner (2007). “CD1 antigen presentation: how it works.” Nat Rev Immunol 7(12): 929–41.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, E. M. and M. B. Brenner (1995). “MHC class I-like, class II-like and CD1 molecules: distinct roles in immunity.” Immunol Today 16(7): 349–52.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, E. M., S. A. Porcelli, et al. (1994). “Recognition of a lipid antigen by CD1-restricted alpha beta  +  T cells.” Nature 372(6507): 691–4.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, E. M., A. Melian, et al. (1996). “CD1c restricts responses of mycobacteria-specific T cells. Evidence for antigen presentation by a second member of the human CD1 family.” J Immunol 157(7): 2795–803.

    PubMed  CAS  Google Scholar 

  • Behar, S. M., C. C. Dascher, et al. (1999). “Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis.” J Exp Med 189(12): 1973–80.

    Article  PubMed  CAS  Google Scholar 

  • Behar, S. M., T. A. Podrebarac, et al. (1999). “Diverse TCRs recognize murine CD1.” J Immunol 162(1): 161–7.

    PubMed  CAS  Google Scholar 

  • Bendelac, A. (1995). “CD1: presenting unusual antigens to unusual T lymphocytes.” Science 269(5221): 185–6.

    Article  PubMed  CAS  Google Scholar 

  • Bendelac, A. (1995). “Mouse NK1+ T cells.” Curr Opin Immunol 7(3): 367–74.

    Article  PubMed  CAS  Google Scholar 

  • Bendelac, A. (1995). “Positive selection of mouse NK1+ T cells by CD1-expressing cortical ­thymocytes.” J Exp Med 182(6): 2091–6.

    Article  PubMed  CAS  Google Scholar 

  • Bendelac, A., P. Matzinger, et al. (1992). “Activation events during thymic selection.” J Exp Med 175(3): 731–42.

    Article  PubMed  CAS  Google Scholar 

  • Bendelac, A., N. Killeen, et al. (1994). “A subset of CD4+ thymocytes selected by MHC class I molecules.” Science 263(5154): 1774–8.

    Article  PubMed  CAS  Google Scholar 

  • Bendelac, A., O. Lantz, et al. (1995). “CD1 recognition by mouse NK1+ T lymphocytes.” Science 268(5212): 863–5.

    Article  PubMed  CAS  Google Scholar 

  • Bendelac, A., M. Bonneville, et al. (2001). “Autoreactivity by design: innate B and T lymphocytes.” Nat Rev Immunol 1(3): 177–86.

    Article  PubMed  CAS  Google Scholar 

  • Bendelac, A., P. B. Savage, et al. (2007). “The biology of NKT cells.” Annu Rev Immunol 25: 297–336.

    Article  PubMed  CAS  Google Scholar 

  • Benlagha, K., A. Weiss, et al. (2000). “In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers.” J Exp Med 191(11): 1895–903.

    Article  PubMed  CAS  Google Scholar 

  • Benlagha, K., T. Kyin, et al. (2002). “A thymic precursor to the NK T cell lineage.” Science 296(5567): 553–5.

    Article  PubMed  CAS  Google Scholar 

  • Borg, N. A., K. S. Wun, et al. (2007). “CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor.” Nature 448(7149): 44–9.

    Article  PubMed  CAS  Google Scholar 

  • Brennan, P. J. and H. Nikaido (1995). “The envelope of mycobacteria.” Annu Rev Biochem 64: 29–63.

    Article  PubMed  CAS  Google Scholar 

  • Bricard, G. and S. A. Porcelli (2007). “Antigen presentation by CD1 molecules and the generation of lipid-specific T cell immunity.” Cell Mol Life Sci 64(14): 1824–40.

    Article  PubMed  CAS  Google Scholar 

  • Brigl, M. and M. B. Brenner (2004). “CD1: antigen presentation and T cell function.” Annu Rev Immunol 22: 817–90.

    Article  PubMed  CAS  Google Scholar 

  • Brigl, M., L. Bry, et al. (2003). “Mechanism of CD1d-restricted natural killer T cell activation during microbial infection.” Nat Immunol 4(12): 1230–7.

    Article  PubMed  CAS  Google Scholar 

  • Brodie, E. L., T. Z. DeSantis, et al. (2007). “Urban aerosols harbor diverse and dynamic bacterial populations.” Proc Natl Acad Sci USA 104(1): 299–304.

    Article  PubMed  CAS  Google Scholar 

  • Brossay, L., D. Jullien, et al. (1997). “Mouse CD1 is mainly expressed on hemopoietic-derived cells.” J Immunol 159(3): 1216–24.

    PubMed  CAS  Google Scholar 

  • Broxmeyer, H. E., A. Dent, et al. (2007). “A role for natural killer T cells and CD1d molecules in counteracting suppression of hematopoiesis in mice induced by infection with murine cytomegalovirus.” Exp Hematol 35(4 Suppl 1): 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Brozovic, S., T. Nagaishi, et al. (2004). “CD1d function is regulated by microsomal triglyceride transfer protein.” Nat Med 10(5): 535–9.

    Article  PubMed  CAS  Google Scholar 

  • Burrows, P. D., M. Kronenberg, et al. (2009). “NKT cells turn ten.” Nat Immunol 10(7): 669–71.

    Article  PubMed  CAS  Google Scholar 

  • Busshoff, U., A. Hein, et al. (2001). “CD1 expression is differentially regulated by microglia, macrophages and T cells in the central nervous system upon inflammation and demyelination.” J Neuroimmunol 113(2): 220–30.

    Article  PubMed  CAS  Google Scholar 

  • Calabi, F., K. T. Belt, et al. (1989). “The rabbit CD1 and the evolutionary conservation of the CD1 gene family.” Immunogenetics 30(5): 370–7.

    Article  PubMed  CAS  Google Scholar 

  • Campos-Martin, Y., M. Colmenares, et al. (2006). “Immature human dendritic cells infected with Leishmania infantum are resistant to NK-mediated cytolysis but are efficiently recognized by NKT cells.” J Immunol 176(10): 6172–9.

    PubMed  CAS  Google Scholar 

  • Cardell, S., S. Tangri, et al. (1995). “CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice.” J Exp Med 182(4): 993–1004.

    Article  PubMed  CAS  Google Scholar 

  • Carnaud, C., D. Lee, et al. (1999). “Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells.” J Immunol 163(9): 4647–50.

    PubMed  CAS  Google Scholar 

  • Caux, C., C. Dezutter-Dambuyant, et al. (1992). “GM-CSF and TNF-alpha cooperate in the ­generation of dendritic Langerhans cells.” Nature 360(6401): 258–61.

    Article  PubMed  CAS  Google Scholar 

  • Cavicchioli, R., F. Fegatella, et al. (1999). “Sphingomonads from marine environments.” J Ind Microbiol Biotechnol 23(4–5): 268–272.

    Article  PubMed  CAS  Google Scholar 

  • Chan, A. C., L. Serwecinska, et al. (2009). “Immune characterization of an individual with an exceptionally high natural killer T cell frequency and her immediate family.” Clin Exp Immunol 156(2): 238–45.

    Article  PubMed  CAS  Google Scholar 

  • Chang, D. H., K. Osman, et al. (2005). “Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients.” J Exp Med 201(9): 1503–17.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y. H., N. M. Chiu, et al. (1997). “Impaired NK1+ T cell development and early IL-4 production in CD1-deficient mice.” Immunity 6(4): 459–67.

    Article  PubMed  CAS  Google Scholar 

  • Chen, N., C. McCarthy, et al. (2006). “HIV-1 down-regulates the expression of CD1d via Nef.” Eur J Immunol 36(2): 278–86.

    Article  PubMed  CAS  Google Scholar 

  • Chiu, Y. H., J. Jayawardena, et al. (1999). “Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments.” J Exp Med 189(1): 103–10.

    Article  PubMed  CAS  Google Scholar 

  • Chiu, Y. H., S. H. Park, et al. (2002). “Multiple defects in antigen presentation and T cell development by mice expressing cytoplasmic tail-truncated CD1d.” Nat Immunol 3(1): 55–60.

    Article  PubMed  CAS  Google Scholar 

  • Cho, S., K. S. Knox, et al. (2005). “Impaired cell surface expression of human CD1d by the formation of an HIV-1 Nef/CD1d complex.” Virology 337(2): 242–52.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, N. R., S. Garg, et al. (2009). “Antigen Presentation by CD1 Lipids, T Cells, and NKT Cells in Microbial Immunity.” Adv Immunol 102: 1–94.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, J. M., J. M. Krisko, et al. (1989). “The distribution of Langerhans cells and CD1a antigen in healthy and diseased human gingiva.” Reg Immunol 2(2): 91–7.

    PubMed  CAS  Google Scholar 

  • Crowe, N. Y., M. J. Smyth, et al. (2002). “A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas.” J Exp Med 196(1): 119–27.

    Article  PubMed  CAS  Google Scholar 

  • Darmoise, A., S. Teneberg, et al. (2010). “Lysosomal alpha-galactosidase controls the generation of self lipid antigens for natural killer T cells.” Immunity 33(2): 216–28.

    Article  PubMed  CAS  Google Scholar 

  • Dascher, C. C. (2007). “Evolutionary biology of CD1.” Curr Top Microbiol Immunol 314: 3–26.

    Article  PubMed  CAS  Google Scholar 

  • Dascher, C. C. and M. B. Brenner (2003). “Evolutionary constraints on CD1 structure: insights from comparative genomic analysis.” Trends Immunol 24(8): 412–8.

    Article  PubMed  CAS  Google Scholar 

  • Dascher, C. C., K. Hiromatsu, et al. (1999). “Conservation of a CD1 multigene family in the guinea pig.” J Immunol 163(10): 5478–88.

    PubMed  CAS  Google Scholar 

  • de la Salle, H., S. Mariotti, et al. (2005). “Assistance of microbial glycolipid antigen processing by CD1e.” Science 310(5752): 1321–4.

    Article  PubMed  CAS  Google Scholar 

  • De Libero, G. and L. Mori (2006). “Mechanisms of lipid-antigen generation and presentation to T cells.” Trends Immunol 27(10): 485–92.

    Article  PubMed  CAS  Google Scholar 

  • De Libero, G., A. P. Moran, et al. (2005). “Bacterial infections promote T cell recognition of self-glycolipids.” Immunity 22(6): 763–72.

    Article  PubMed  CAS  Google Scholar 

  • De Santo, C., M. Salio, et al. (2008). “Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans.” J Clin Invest 118(12): 4036–48.

    Google Scholar 

  • Denkers, E. Y., T. Scharton-Kersten, et al. (1996). “A role for CD4+ NK1.1+ T lymphocytes as major histocompatibility complex class II independent helper cells in the generation of CD8+ effector function against intracellular infection.” J Exp Med 184(1): 131–9.

    Article  PubMed  CAS  Google Scholar 

  • Dieckmann, R., I. Graeber, et al. (2005). “Rapid screening and dereplication of bacterial isolates from marine sponges of the sula ridge by intact-cell-MALDI-TOF mass spectrometry (ICM-MS).” Appl Microbiol Biotechnol 67(4): 539–48.

    Article  PubMed  CAS  Google Scholar 

  • Dougan, S. K., A. Salas, et al. (2005). “Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells.” J Exp Med 202(4): 529–39.

    Article  PubMed  CAS  Google Scholar 

  • Dougan, S. K., P. Rava, et al. (2007). “MTP regulated by an alternate promoter is essential for NKT cell development.” J Exp Med 204(3): 533–45.

    Article  PubMed  CAS  Google Scholar 

  • Duthie, M. S. and S. J. Kahn (2005). “NK cell activation and protection occur independently of natural killer T cells during Trypanosoma cruzi infection.” Int Immunol 17(5): 607–13.

    Article  PubMed  CAS  Google Scholar 

  • Duthie, M. S. and S. J. Kahn (2006). “During acute Trypanosoma cruzi infection highly susceptible mice deficient in natural killer cells are protected by a single alpha-galactosylceramide treatment.” Immunology 119(3): 355–61.

    Article  PubMed  CAS  Google Scholar 

  • Duthie, M. S., M. Kahn, et al. (2005). “Both CD1d antigen presentation and interleukin-12 are required to activate natural killer T cells during Trypanosoma cruzi infection.” Infect Immun 73(3): 1890–4.

    Article  PubMed  CAS  Google Scholar 

  • Duthie, M. S., M. Kahn, et al. (2005). “Critical proinflammatory and anti-inflammatory functions of different subsets of CD1d-restricted natural killer T cells during Trypanosoma cruzi infection.” Infect Immun 73(1): 181–92.

    Article  PubMed  CAS  Google Scholar 

  • Dyall, S. D., M. T. Brown, et al. (2004). “Ancient invasions: from endosymbionts to organelles.” Science 304(5668): 253–7.

    Article  PubMed  CAS  Google Scholar 

  • Eberl, G., R. Lees, et al. (1999). “Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells.” J Immunol 162(11): 6410–9.

    PubMed  CAS  Google Scholar 

  • Ederer, M. M., R. L. Crawford, et al. (1997). “PCP degradation is mediated by closely related strains of the genus Sphingomonas.” Mol Ecol 6(1): 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Falcone, M., B. Yeung, et al. (1999). “A defect in interleukin 12-induced activation and interferon gamma secretion of peripheral natural killer T cells in nonobese diabetic mice suggests new pathogenic mechanisms for insulin-dependent diabetes mellitus.” J Exp Med 190(7): 963–72.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, K., E. Scotet, et al. (2004). “Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells.” Proc Natl Acad Sci USA 101(29): 10685–90.

    Article  PubMed  CAS  Google Scholar 

  • Fithian, E., P. Kung, et al. (1981). “Reactivity of Langerhans cells with hybridoma antibody.” Proc Natl Acad Sci USA 78(4): 2541–4.

    Article  PubMed  CAS  Google Scholar 

  • Forestier, C., A. Molano, et al. (2005). “Expansion and hyperactivity of CD1d-restricted NKT cells during the progression of systemic lupus erythematosus in (New Zealand Black x New Zealand White)F1 mice.” J Immunol 175(2): 763–70.

    PubMed  CAS  Google Scholar 

  • Fujii, S., K. Shimizu, et al. (2003). “Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein.” J Exp Med 198(2): 267–79.

    Article  PubMed  CAS  Google Scholar 

  • Fujii, S., K. Liu, et al. (2004). “The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation.” J Exp Med 199(12): 1607–18.

    Article  PubMed  CAS  Google Scholar 

  • Fuss, I. J., F. Heller, et al. (2004). “Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis.” J Clin Invest 113(10): 1490–7.

    PubMed  CAS  Google Scholar 

  • Galli, G., S. Nuti, et al. (2003). “CD1d-restricted help to B cells by human invariant natural killer T lymphocytes.” J Exp Med 197(8): 1051–7.

    Article  PubMed  CAS  Google Scholar 

  • Galli, G., S. Nuti, et al. (2003). “Innate immune responses support adaptive immunity: NKT cells induce B cell activation.” Vaccine 21 Suppl 2: S48-54.

    Article  PubMed  CAS  Google Scholar 

  • Galli, G., P. Pittoni, et al. (2007). “Invariant NKT cells sustain specific B cell responses and memory.” Proc Natl Acad Sci USA 104(10): 3984–9.

    Article  PubMed  CAS  Google Scholar 

  • Geissmann, F., T. O. Cameron, et al. (2005). “Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids.” PLoS Biol 3(4): e113.

    Article  PubMed  CAS  Google Scholar 

  • Gerlini, G., H. P. Hefti, et al. (2001). “Cd1d is expressed on dermal dendritic cells and monocyte-derived dendritic cells.” J Invest Dermatol 117(3): 576–82.

    Article  PubMed  CAS  Google Scholar 

  • Gershwin, M. E., A. A. Ansari, et al. (2000). “Primary biliary cirrhosis: an orchestrated immune response against epithelial cells.” Immunol Rev 174: 210–25.

    Article  PubMed  CAS  Google Scholar 

  • Giaccone, G., C. J. Punt, et al. (2002). “A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors.” Clin Cancer Res 8(12): 3702–9.

    PubMed  CAS  Google Scholar 

  • Gilleron, M., S. Stenger, et al. (2004). “Diacylated sulfoglycolipids are novel mycobacterial ­antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis.” J Exp Med 199(5): 649–59.

    Article  PubMed  CAS  Google Scholar 

  • Glupczynski, Y., W. Hansen, et al. (1984). “Pseudomonas paucimobilis peritonitis in patients treated by peritoneal dialysis.” J Clin Microbiol 20(6): 1225–6.

    PubMed  CAS  Google Scholar 

  • Godfrey, D. I., S. J. Kinder, et al. (1997). “Flow cytometric study of T cell development in NOD mice reveals a deficiency in alphabetaTCR  +  CDR-CD8- thymocytes.” J Autoimmun 10(3): 279–85.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey, D. I., H. R. MacDonald, et al. (2004). “NKT cells: what’s in a name?” Nat Rev Immunol 4(3): 231–7.

    Article  PubMed  CAS  Google Scholar 

  • Gombert, J. M., A. Herbelin, et al. (1996). “Early quantitative and functional deficiency of NK1  +  −like thymocytes in the NOD mouse.” Eur J Immunol 26(12): 2989–98.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Aseguinolaza, G., L. Van Kaer, et al. (2002). “Natural killer T cell ligand alpha-­galactosylceramide enhances protective immunity induced by malaria vaccines.” J Exp Med 195(5): 617–24.

    Article  PubMed  CAS  Google Scholar 

  • Griewank, K., C. Borowski, et al. (2007). “Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development.” Immunity 27(5): 751–62.

    Article  PubMed  CAS  Google Scholar 

  • Gumperz, J. E., C. Roy, et al. (2000). “Murine CD1d-restricted T cell recognition of cellular ­lipids.” Immunity 12(2): 211–21.

    Article  PubMed  CAS  Google Scholar 

  • Hage, C. A., L. L. Kohli, et al. (2005). “Human immunodeficiency virus gp120 downregulates CD1d cell surface expression.” Immunol Lett 98(1): 131–5.

    Article  PubMed  CAS  Google Scholar 

  • Halden, R. U., B. G. Halden, et al. (1999). “Removal of dibenzofuran, dibenzo-p-dioxin, and 2-chlorodibenzo-p-dioxin from soils inoculated with Sphingomonas sp. strain RW1.” Appl Environ Microbiol 65(5): 2246–9.

    PubMed  CAS  Google Scholar 

  • Harada, K., K. Isse, et al. (2003). “Accumulating CD57  +  CD3  +  natural killer T cells are related to intrahepatic bile duct lesions in primary biliary cirrhosis.” Liver Int 23(2): 94–100.

    Article  PubMed  Google Scholar 

  • Hayes, S. M. and K. L. Knight (2001). “Group 1 CD1 genes in rabbit.” J Immunol 166(1): 403–10.

    PubMed  CAS  Google Scholar 

  • Hong, S., M. T. Wilson, et al. (2001). “The natural killer T-cell ligand alpha-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice.” Nat Med 7(9): 1052–6.

    Article  PubMed  CAS  Google Scholar 

  • Hsueh, P. R., L. J. Teng, et al. (1998). “Nosocomial infections caused by Sphingomonas paucimobilis: clinical features and microbiological characteristics.” Clin Infect Dis 26(3): 676–81.

    Article  PubMed  CAS  Google Scholar 

  • Huang, S., S. Gilfillan, et al. (2008). “MR1 uses an endocytic pathway to activate mucosal-associated invariant T cells.” J Exp Med 205(5): 1201–11.

    Article  PubMed  CAS  Google Scholar 

  • Huber, S., D. Sartini, et al. (2003). “Role of CD1d in coxsackievirus B3-induced myocarditis.” J Immunol 170(6): 3147–53.

    PubMed  CAS  Google Scholar 

  • Ilyinskii, P. O., R. Wang, et al. (2006). “CD1d mediates T-cell-dependent resistance to secondary infection with encephalomyocarditis virus (EMCV) in vitro and immune response to EMCV infection in vivo.” J Virol 80(14): 7146–58.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, H., H. Hisaeda, et al. (2000). “CD4(+) v(alpha)14 NKT cells play a crucial role in an early stage of protective immunity against infection with Leishmania major.” Int Immunol 12(9): 1267–74.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, A., S. Motohashi, et al. (2005a). “A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer.” Clin Cancer Res 11(5): 1910–7.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, E., S. Motohashi, et al. (2005b). “Dendritic cell maturation by CD11c- T cells and Valpha24+ natural killer T-cell activation by alpha-galactosylceramide.” Int J Cancer 117(2): 265–73.

    Article  PubMed  CAS  Google Scholar 

  • Joyce, S. and L. Van Kaer (2003). “CD1-restricted antigen presentation: an oily matter.” Curr Opin Immunol 15(1): 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Joyee, A. G., H. Qiu, et al. (2007). “Distinct NKT cell subsets are induced by different Chlamydia species leading to differential adaptive immunity and host resistance to the infections.” J Immunol 178(2): 1048–58.

    PubMed  CAS  Google Scholar 

  • Joyee, A. G., H. Qiu, et al. (2008). “Natural killer T cells are critical for dendritic cells to induce immunity in Chlamydial pneumonia.” Am J Respir Crit Care Med 178(7): 745–56.

    Article  PubMed  CAS  Google Scholar 

  • Kakimi, K., L. G. Guidotti, et al. (2000). “Natural killer T cell activation inhibits hepatitis B virus replication in vivo.” J Exp Med 192(7): 921–30.

    Article  PubMed  CAS  Google Scholar 

  • Kang, S. J. and P. Cresswell (2004). “Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells.” Nat Immunol 5(2): 175–81.

    Article  PubMed  CAS  Google Scholar 

  • Kasahara, M. (1997). “New insights into the genomic organization and origin of the major histocompatibility complex: role of chromosomal (genome) duplication in the emergence of the adaptive immune system.” Hereditas 127(1–2): 59–65.

    PubMed  CAS  Google Scholar 

  • Kasmar, A., I. Van Rhijn, et al. (2009). “The evolved functions of CD1 during infection.” Curr Opin Immunol 21(4): 397–403.

    Article  PubMed  CAS  Google Scholar 

  • Kawahara, K., H. Kuraishi, et al. (1999). “Chemical structure and function of glycosphingolipids of Sphingomonas spp and their distribution among members of the alpha-4 subclass of Proteobacteria.” J Ind Microbiol Biotechnol 23(4–5): 408–413.

    Article  PubMed  CAS  Google Scholar 

  • Kawahara, K., B. Lindner, et al. (2001). “Structural analysis of a new glycosphingolipid from the lipopolysaccharide-lacking bacterium Sphingomonas adhaesiva.” Carbohydr Res 333(1): 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, K., N. Yamamoto, et al. (2003). “Critical role of Valpha14+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection.” Eur J Immunol 33(12): 3322–30.

    Article  PubMed  CAS  Google Scholar 

  • Kawano, T., J. Cui, et al. (1997). “CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides.” Science 278(5343): 1626–9.

    Article  PubMed  CAS  Google Scholar 

  • Kilic, A., Z. Senses, et al. (2007). “Nosocomial outbreak of Sphingomonas paucimobilis bacteremia in a hemato/oncology unit.” Jpn J Infect Dis 60(6): 394–6.

    PubMed  Google Scholar 

  • Kinjo, Y., D. Wu, et al. (2005). “Recognition of bacterial glycosphingolipids by natural killer T cells.” Nature 434(7032): 520–5.

    Article  PubMed  CAS  Google Scholar 

  • Kinjo, Y., E. Tupin, et al. (2006). “Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria.” Nat Immunol 7(9): 978–86.

    Article  PubMed  CAS  Google Scholar 

  • Kita, H., O. V. Naidenko, et al. (2002). “Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer.” Gastroenterology 123(4): 1031–43.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, E., K. Motoki, et al. (1995). “KRN7000, a novel immunomodulator, and its antitumor activities.” Oncol Res 7(10–11): 529–34.

    PubMed  CAS  Google Scholar 

  • Koch, M., V. S. Stronge, et al. (2005). “The crystal structure of human CD1d with and without alpha-galactosylceramide.” Nat Immunol 6(8): 819–26.

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg, M. (2005). “Toward an understanding of NKT cell biology: progress and paradoxes.” Annu Rev Immunol 23: 877–900.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, H., A. Belperron, et al. (2000). “Cutting edge: CD1d deficiency impairs murine host defense against the spirochete, Borrelia burgdorferi.” J Immunol 165(9): 4797–801.

    PubMed  CAS  Google Scholar 

  • Leadbetter, E. A., M. Brigl, et al. (2008). “NK T cells provide lipid antigen-specific cognate help for B cells.” Proc Natl Acad Sci USA 105(24): 8339–44.

    Article  PubMed  CAS  Google Scholar 

  • Lee, P. T., A. Putnam, et al. (2002). “Testing the NKT cell hypothesis of human IDDM pathogenesis.” J Clin Invest 110(6): 793–800.

    PubMed  CAS  Google Scholar 

  • Li, Y., P. Thapa, et al. (2009). “Immunologic glycosphingolipidomics and NKT cell development in mouse thymus.” J Proteome Res 8(6): 2740–51.

    Article  PubMed  CAS  Google Scholar 

  • Lin, M. and Y. Rikihisa (2003). “Ehrlichia chaffeensis and Anaplasma phagocytophilum lack genes for lipid A biosynthesis and incorporate cholesterol for their survival.” Infect Immun 71(9): 5324–31.

    Article  PubMed  CAS  Google Scholar 

  • Lisbonne, M., S. Diem, et al. (2003). “Cutting edge: invariant V alpha 14 NKT cells are required for allergen-induced airway inflammation and hyperreactivity in an experimental asthma model.” J Immunol 171(4): 1637–41.

    PubMed  CAS  Google Scholar 

  • Liu, Y., R. D. Goff, et al. (2006). “A modified alpha-galactosyl ceramide for staining and stimulating natural killer T cells.” J Immunol Methods 312(1–2): 34–9.

    Article  PubMed  CAS  Google Scholar 

  • Long, X., S. Deng, et al. (2007). “Synthesis and evaluation of stimulatory properties of Sphingomonadaceae glycolipids.” Nat Chem Biol 3(9): 559–64.

    Article  PubMed  CAS  Google Scholar 

  • Mallevaey, T., J. P. Zanetta, et al. (2006). “Activation of invariant NKT cells by the helminth parasite schistosoma mansoni.” J Immunol 176(4): 2476–85.

    PubMed  CAS  Google Scholar 

  • Mallevaey, T., J. Fontaine, et al. (2007). “Invariant and noninvariant natural killer T cells exert opposite regulatory functions on the immune response during murine schistosomiasis.” Infect Immun 75(5): 2171–80.

    Article  PubMed  CAS  Google Scholar 

  • Mars, L. T., J. Novak, et al. (2004). “Therapeutic manipulation of iNKT cells in autoimmunity: modes of action and potential risks.” Trends Immunol 25(9): 471–6.

    Article  PubMed  CAS  Google Scholar 

  • Martino, R., C. Martinez, et al. (1996). “Bacteremia due to glucose non-fermenting gram-negative bacilli in patients with hematological neoplasias and solid tumors.” Eur J Clin Microbiol Infect Dis 15(7): 610–5.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda, J. L., O. V. Naidenko, et al. (2000). “Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers.” J Exp Med 192(5): 741–54.

    Article  PubMed  CAS  Google Scholar 

  • Matsuura, A., M. Kinebuchi, et al. (2000). “NKT cells in the rat: organ-specific distribution of NK T cells expressing distinct V alpha 14 chains.” J Immunol 164(6): 3140–8.

    PubMed  CAS  Google Scholar 

  • Mattner, J., K. L. Debord, et al. (2005). “Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections.” Nature 434(7032): 525–9.

    Article  PubMed  CAS  Google Scholar 

  • Mattner, J., N. Donhauser, et al. (2006). “NKT cells mediate organ-specific resistance against Leishmania major infection.” Microbes Infect 8(2): 354–62.

    Article  PubMed  CAS  Google Scholar 

  • Mattner, J., P. B. Savage, et al. (2008). “Liver autoimmunity triggered by microbial activation of natural killer T cells.” Cell Host Microbe 3(5): 304–15.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, E. H., R. H. DeKruyff, et al. (2007). “iNKT cells in allergic disease.” Curr Top Microbiol Immunol 314: 269–91.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, E. H., R. H. DeKruyff, et al. (2008). “T cells and NKT cells in the pathogenesis of asthma.” Annu Rev Med 59: 281–92.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J., C. Rogers, et al. (2003). “Monitoring the coral disease, plague type II, on coral reefs in St. John, U.S. Virgin Islands.” Rev Biol Trop 51 Suppl 4: 47–55.

    Google Scholar 

  • Miller, M. M., C. Wang, et al. (2005). “Characterization of two avian MHC-like genes reveals an ancient origin of the CD1 family.” Proc Natl Acad Sci USA 102(24): 8674–9.

    Article  PubMed  CAS  Google Scholar 

  • Molano, A., S. H. Park, et al. (2000). “Cutting edge: the IgG response to the circumsporozoite protein is MHC class II-dependent and CD1d-independent: exploring the role of GPIs in NK T cell activation and antimalarial responses.” J Immunol 164(10): 5005–9.

    PubMed  CAS  Google Scholar 

  • Moody, D. B., B. B. Reinhold, et al. (1997). “Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells.” Science 278(5336): 283–6.

    Article  PubMed  CAS  Google Scholar 

  • Moody, D. B., T. Ulrichs, et al. (2000). “CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection.” Nature 404(6780): 884–8.

    Article  PubMed  CAS  Google Scholar 

  • Moody, D. B., V. Briken, et al. (2002). “Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation.” Nat Immunol 3(5): 435–42.

    PubMed  CAS  Google Scholar 

  • Moody, D. B., D. C. Young, et al. (2004). “T cell activation by lipopeptide antigens.” Science 303(5657): 527–31.

    Article  PubMed  CAS  Google Scholar 

  • Morita, M., K. Motoki, et al. (1995). “Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice.” J Med Chem 38(12): 2176–87.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, A. J., Jr. and J. A. Shulman (1986). “Community-acquired bloodstream infection caused by Pseudomonas paucimobilis: case report and review of the literature.” J Clin Microbiol 24(5): 853–5.

    PubMed  Google Scholar 

  • Nestle, F. O., X. G. Zheng, et al. (1993). “Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets.” J Immunol 151(11): 6535–45.

    PubMed  CAS  Google Scholar 

  • Nichols, K. E., J. Hom, et al. (2005). “Regulation of NKT cell development by SAP, the protein defective in XLP.” Nat Med 11(3): 340–5.

    Article  PubMed  CAS  Google Scholar 

  • Nicol, A., M. Nieda, et al. (2000). “Human invariant valpha24+ natural killer T cells activated by alpha-galactosylceramide (KRN7000) have cytotoxic anti-tumour activity through mechanisms distinct from T cells and natural killer cells.” Immunology 99(2): 229–34.

    Article  PubMed  CAS  Google Scholar 

  • Nieda, M., M. Okai, et al. (2004). “Therapeutic activation of Valpha24  +  Vbeta11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity.” Blood 103(2): 383–9.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuis, E. E., T. Matsumoto, et al. (2002). “CD1d-dependent macrophage-mediated ­clearance of Pseudomonas aeruginosa from lung.” Nat Med 8(6): 588–93.

    Article  PubMed  CAS  Google Scholar 

  • Ochoa, M. T., A. Loncaric, et al. (2008). “‘Dermal dendritic cells’ comprise two distinct populations: CD1+ dendritic cells and CD209+ macrophages.” J Invest Dermatol 128(9): 2225–31.

    Article  PubMed  CAS  Google Scholar 

  • Ohteki, T. and H. R. MacDonald (1994). “Major histocompatibility complex class I related ­molecules control the development of CD4  +  8- and CD4-8- subsets of natural killer 1.1+ T cell receptor-alpha/beta  +  cells in the liver of mice.” J Exp Med 180(2): 699–704.

    Article  PubMed  CAS  Google Scholar 

  • Paget, C., T. Mallevaey, et al. (2007). “Activation of invariant NKT cells by toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids.” Immunity 27(4): 597–609.

    Article  PubMed  CAS  Google Scholar 

  • Park, S. H., J. H. Roark, et al. (1998). “Tissue-specific recognition of mouse CD1 molecules.” J Immunol 160(7): 3128–34.

    PubMed  CAS  Google Scholar 

  • Pasquier, B., L. Yin, et al. (2005). “Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product.” J Exp Med 201(5): 695–701.

    Article  PubMed  CAS  Google Scholar 

  • Peel, M. M., J. M. Davis, et al. (1979). “Pseudomonas paucimobilis from a leg ulcer on a Japanese seaman.” J Clin Microbiol 9(5): 561–4.

    PubMed  CAS  Google Scholar 

  • Perola, O., T. Nousiainen, et al. (2002). “Recurrent Sphingomonas paucimobilis -bacteraemia associated with a multi-bacterial water-borne epidemic among neutropenic patients.” J Hosp Infect 50(3): 196–201.

    Article  PubMed  CAS  Google Scholar 

  • Pinyakong, O., H. Habe, et al. (2003). “The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs).” J Gen Appl Microbiol 49(1): 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Porcelli, S. A. and R. L. Modlin (1999). “The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids.” Annu Rev Immunol 17: 297–329.

    Article  PubMed  CAS  Google Scholar 

  • Porubsky, S., A. O. Speak, et al. (2007). “Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency.” Proc Natl Acad Sci USA 104(14): 5977–82.

    Article  PubMed  CAS  Google Scholar 

  • Procopio, D. O., I. C. Almeida, et al. (2002). “Glycosylphosphatidylinositol-anchored ­mucin-like glycoproteins from Trypanosoma cruzi bind to CD1d but do not elicit dominant innate or adaptive immune responses via the CD1d/NKT cell pathway.” J Immunol 169(7): 3926–33.

    PubMed  CAS  Google Scholar 

  • Pyz, E., O. Naidenko, et al. (2006). “The complementarity determining region 2 of BV8S2 (V beta 8.2) contributes to antigen recognition by rat invariant NKT cell TCR.” J Immunol 176(12): 7447–55.

    PubMed  CAS  Google Scholar 

  • Ranson, T., S. Bregenholt, et al. (2005). “Invariant V alpha 14+ NKT cells participate in the early response to enteric Listeria monocytogenes infection.” J Immunol 175(2): 1137–44.

    PubMed  CAS  Google Scholar 

  • Reina, J., A. Bassa, et al. (1991). “Infections with Pseudomonas paucimobilis: report of four cases and review.” Rev Infect Dis 13(6): 1072–6.

    Article  PubMed  CAS  Google Scholar 

  • Renukaradhya, G. J., T. J. Webb, et al. (2005). “Virus-induced inhibition of CD1d1-mediated ­antigen presentation: reciprocal regulation by p38 and ERK.” J Immunol 175(7): 4301–8.

    PubMed  CAS  Google Scholar 

  • Rigaud, S., M. C. Fondaneche, et al. (2006). “XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome.” Nature 444(7115): 110–4.

    Article  PubMed  CAS  Google Scholar 

  • Roark, J. H., S. H. Park, et al. (1998). “CD1.1 expression by mouse antigen-presenting cells and marginal zone B cells.” J Immunol 160(7): 3121–7.

    PubMed  CAS  Google Scholar 

  • Roberts, T. J., V. Sriram, et al. (2002). “Recycling CD1d1 molecules present endogenous antigens processed in an endocytic compartment to NKT cells.” J Immunol 168(11): 5409–14.

    PubMed  CAS  Google Scholar 

  • Roberts, T. J., Y. Lin, et al. (2004). “CD1d1-dependent control of the magnitude of an acute ­antiviral immune response.” J Immunol 172(6): 3454–61.

    PubMed  CAS  Google Scholar 

  • Romero, J. F., G. Eberl, et al. (2001). “CD1d-restricted NK T cells are dispensable for specific antibody responses and protective immunity against liver stage malaria infection in mice.” Parasite Immunol 23(5): 267–9.

    Article  PubMed  CAS  Google Scholar 

  • Rosat, J. P., E. P. Grant, et al. (1999). “CD1-restricted microbial lipid antigen-specific recognition found in the CD8+ alpha beta T cell pool.” J Immunol 162(1): 366–71.

    PubMed  CAS  Google Scholar 

  • Rosenberg, E. and Y. Ben-Haim (2002). “Microbial diseases of corals and global warming.” Environ Microbiol 4(6): 318–26.

    Article  PubMed  Google Scholar 

  • Salazar, R., R. Martino, et al. (1995). “Catheter-related bacteremia due to Pseudomonas paucimobilis in neutropenic cancer patients: report of two cases.” Clin Infect Dis 20(6): 1573–4.

    Article  PubMed  CAS  Google Scholar 

  • Salomonsen, J., M. R. Sorensen, et al. (2005). “Two CD1 genes map to the chicken MHC, indicating that CD1 genes are ancient and likely to have been present in the primordial MHC.” Proc Natl Acad Sci USA 102(24): 8668–73.

    Article  PubMed  CAS  Google Scholar 

  • Saltissi, D. and D. J. Macfarlane (1994). “Successful treatment of Pseudomonas paucimobilis haemodialysis catheter-related sepsis without catheter removal.” Postgrad Med J 70(819): 47–8.

    Article  PubMed  CAS  Google Scholar 

  • Schofield, L., M. J. McConville, et al. (1999). “CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells.” Science 283(5399): 225–9.

    Article  PubMed  CAS  Google Scholar 

  • Selmi, C., D. L. Balkwill, et al. (2003). “Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic-metabolizing bacterium.” Hepatology 38(5): 1250–7.

    Article  PubMed  CAS  Google Scholar 

  • Selmi, C., M. J. Mayo, et al. (2004). “Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment.” Gastroenterology 127(2): 485–92.

    Article  PubMed  Google Scholar 

  • Sharif, S., G. A. Arreaza, et al. (2001). “Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes.” Nat Med 7(9): 1057–62.

    Article  PubMed  CAS  Google Scholar 

  • Shi, T., J. K. Fredrickson, et al. (2001). “Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas strains isolated from the terrestrial subsurface.” J Ind Microbiol Biotechnol 26(5): 283–9.

    Article  PubMed  CAS  Google Scholar 

  • Shimamura, M. (2008). “Glycolipid stimulators for NKT cells bearing invariant V alpha 19-J alpha 33 TCR alpha chains.” Mini Rev Med Chem 8(3): 285–9.

    Article  PubMed  CAS  Google Scholar 

  • Shimamura, M., N. Okamoto, et al. (2006). “Induction of promotive rather than suppressive immune responses from a novel NKT cell repertoire Valpha19 NKT cell with alpha-mannosyl ceramide analogues consisting of the immunosuppressant ISP-I as the sphingosine unit.” Eur J Med Chem 41(5): 569–76.

    Article  PubMed  CAS  Google Scholar 

  • Shimamura, M., Y. Y. Huang, et al. (2007). “Modulation of Valpha19 NKT cell immune responses by alpha-mannosyl ceramide derivatives consisting of a series of modified sphingosines.” Eur J Immunol 37(7): 1836–44.

    Article  PubMed  CAS  Google Scholar 

  • Sholl, L. M., J. L. Hornick, et al. (2007). “Immunohistochemical analysis of langerin in langerhans cell histiocytosis and pulmonary inflammatory and infectious diseases.” Am J Surg Pathol 31(6): 947–52.

    Article  PubMed  Google Scholar 

  • Skold, M., X. Xiong, et al. (2005). “Interplay of cytokines and microbial signals in regulation of CD1d expression and NKT cell activation.” J Immunol 175(6): 3584–93.

    PubMed  Google Scholar 

  • Song, L., S. Asgharzadeh, et al. (2009). “Valpha24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages.” J Clin Invest 119(6): 1524–36.

    Article  PubMed  CAS  Google Scholar 

  • Southern, P. M., Jr. and A. E. Kutscher (1981). “Pseudomonas paucimobilis bacteremia.” J Clin Microbiol 13(6): 1070–3.

    PubMed  CAS  Google Scholar 

  • Spada, F. M., Y. Koezuka, et al. (1998). “CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells.” J Exp Med 188(8): 1529–34.

    Article  PubMed  CAS  Google Scholar 

  • Speak, A. O., M. Salio, et al. (2007). “Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals.” Proc Natl Acad Sci USA 104(14): 5971–6.

    Article  PubMed  CAS  Google Scholar 

  • Sriram, V., W. Du, et al. (2005). “Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells.” Eur J Immunol 35(6): 1692–701.

    Article  PubMed  CAS  Google Scholar 

  • Stanic, A. K., A. D. De Silva, et al. (2003). “Defective presentation of the CD1d1-restricted natural Va14Ja18 NKT lymphocyte antigen caused by beta-D-glucosylceramide synthase deficiency.” Proc Natl Acad Sci USA 100(4): 1849–54.

    Article  PubMed  CAS  Google Scholar 

  • Stanley, A. C., Y. Zhou, et al. (2008). “Activation of invariant NKT cells exacerbates experimental visceral leishmaniasis.” PLoS Pathog 4(2): e1000028.

    Article  PubMed  CAS  Google Scholar 

  • Stetson, D. B., M. Mohrs, et al. (2003). “Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function.” J Exp Med 198(7): 1069–76.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson, H. L., E. C. Crossley, et al. (2008). “Regulatory roles of CD1d-restricted NKT cells in the induction of toxic shock-like syndrome in an animal model of fatal ehrlichiosis.” Infect Immun 76(4): 1434–44.

    Article  PubMed  CAS  Google Scholar 

  • Swann, J., N. Y. Crowe, et al. (2004). “Regulation of antitumour immunity by CD1d-restricted NKT cells.” Immunol Cell Biol 82(3): 323–31.

    Article  PubMed  CAS  Google Scholar 

  • Szalay, G., C. H. Ladel, et al. (1999). “Cutting edge: anti-CD1 monoclonal antibody treatment reverses the production patterns of TGF-beta 2 and Th1 cytokines and ameliorates listeriosis in mice.” J Immunol 162(12): 6955–8.

    PubMed  CAS  Google Scholar 

  • Terabe, M. and J. A. Berzofsky (2008). “The role of NKT cells in tumor immunity.” Adv Cancer Res 101: 277–348.

    Article  PubMed  CAS  Google Scholar 

  • Terabe, M., S. Matsui, et al. (2000). “NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway.” Nat Immunol 1(6): 515–20.

    Article  PubMed  CAS  Google Scholar 

  • Tonti, E., G. Galli, et al. (2009). “NKT-cell help to B lymphocytes can occur independently of cognate interaction.” Blood 113(2): 370–6.

    Article  PubMed  CAS  Google Scholar 

  • Tsuneyama, K., M. Yasoshima, et al. (1998). “Increased CD1d expression on small bile duct epithelium and epithelioid granuloma in livers in primary biliary cirrhosis.” Hepatology 28(3): 620–3.

    Article  PubMed  CAS  Google Scholar 

  • Uldrich, A. P., N. Y. Crowe, et al. (2005). “NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, Bim-dependent contraction, and hyporesponsiveness to further antigenic challenge.” J Immunol 175(5): 3092–101.

    PubMed  CAS  Google Scholar 

  • van Dieren, J. M., C. J. van der Woude, et al. (2007). “Roles of CD1d-restricted NKT cells in the intestine.” Inflamm Bowel Dis 13(9): 1146–52.

    Article  PubMed  Google Scholar 

  • Van Kaer, L. (2005). “alpha-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles.” Nat Rev Immunol 5(1): 31–42.

    Article  PubMed  CAS  Google Scholar 

  • Van Rhijn, I., A. P. Koets, et al. (2006). “The bovine CD1 family contains group 1 CD1 proteins, but no functional CD1d.” J Immunol 176(8): 4888–93.

    PubMed  Google Scholar 

  • Vilarinho, S., K. Ogasawara, et al. (2007). “Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus.” Proc Natl Acad Sci USA 104(46): 18187–92.

    Article  PubMed  CAS  Google Scholar 

  • von Loewenich, F. D., D. G. Scorpio, et al. (2004). “Frontline: control of Anaplasma phagocytophilum, an obligate intracellular pathogen, in the absence of inducible nitric oxide synthase, phagocyte NADPH oxidase, tumor necrosis factor, Toll-like receptor (TLR)2 and TLR4, or the TLR adaptor molecule MyD88.” Eur J Immunol 34(7): 1789–97.

    Article  Google Scholar 

  • Wiethe, C., A. Debus, et al. (2008). “Dendritic cell differentiation state and their interaction with NKT cells determine Th1/Th2 differentiation in the murine model of Leishmania major infection.” J Immunol 180(7): 4371–81.

    PubMed  CAS  Google Scholar 

  • Winau, F., V. Schwierzeck, et al. (2004). “Saposin C is required for lipid presentation by human CD1b.” Nat Immunol 5(2): 169–74.

    Article  PubMed  CAS  Google Scholar 

  • Woltman, A. M., M. J. Ter Borg, et al. (2009). “Alpha-galactosylceramide in chronic hepatitis B infection: results from a randomized placebo-controlled Phase I/II trial.” Antivir Ther 14(6): 809–18.

    Article  PubMed  CAS  Google Scholar 

  • Xia, C., Q. Yao, et al. (2006). “Synthesis and biological evaluation of alpha-galactosylceramide (KRN7000) and isoglobotrihexosylceramide (iGb3).” Bioorg Med Chem Lett 16(8): 2195–9.

    Article  PubMed  CAS  Google Scholar 

  • Yabuuchi, E., I. Yano, et al. (1990). “Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas.” Microbiol Immunol 34(2): 99–119.

    PubMed  CAS  Google Scholar 

  • Yin, L., U. Al-Alem, et al. (2003). “Mice deficient in the X-linked lymphoproliferative disease gene sap exhibit increased susceptibility to murine gammaherpesvirus-68 and hypo-gammaglobulinemia.” J Med Virol 71(3): 446–55.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, W., A. Dasgupta, et al. (2006). “Herpes simplex virus evades natural killer T cell recognition by suppressing CD1d recycling.” Nat Immunol 7(8): 835–42.

    Article  PubMed  CAS  Google Scholar 

  • Zajonc, D. M., C. Cantu, 3 rd, et al. (2005). “Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor.” Nat Immunol 6(8): 810–8.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, D., M. Dick, et al. (1998). “Subsets of transgenic T cells that recognize CD1 induce or prevent murine lupus: role of cytokines.” J Exp Med 187(4): 525–36.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, D., M. K. Lee, et al. (2000). “Cutting edge: a role for CD1 in the pathogenesis of lupus in NZB/NZW mice.” J Immunol 164(10): 5000–4.

    PubMed  CAS  Google Scholar 

  • Zeng, D., Y. Liu, et al. (2003). “Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus.” J Clin Invest 112(8): 1211–22.

    PubMed  CAS  Google Scholar 

  • Zhou, D., C. Cantu, 3 rd, et al. (2004). “Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins.” Science 303(5657): 523–7.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, D., J. Mattner, et al. (2004). “Lysosomal glycosphingolipid recognition by NKT cells.” Science 306(5702): 1786–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Mattner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Mattner, J. (2012). NKT Cell Activation During (Microbial) Infection. In: Aliberti, J. (eds) Control of Innate and Adaptive Immune Responses during Infectious Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0484-2_3

Download citation

Publish with us

Policies and ethics