Skip to main content

A Note on the Sequential Linear Fractional Dynamical Systems from the Control System Viewpoint and L 2 -Theory

  • Chapter
  • First Online:
Fractional Dynamics and Control

Abstract

In this chapter, we consider a sequential linear fractional differential equation with constant coefficients. After deriving a closed analytical solution based on the sequential fractional derivatives, we propose a theorem that gives some weak conditions under which any arbitrary function in L 2 can be approximated by an output of a linear time-invariant fractional differential equation. More precisely, we prove that all L 2 functions can be represented as the L 2 limit of functions that are the outputs of fractional linear control systems. The analysis is developed in the Hilbert space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cafagna D (2007) Fractional calculus: a mathematical tool from the past for the present engineer. IEEE Trans Indus Electron:35–40

    Google Scholar 

  2. Gao X (2006) Chaos in fractional order autonomous system and its control. IEEE:2577–2581

    Google Scholar 

  3. Rossikhin YA, Shitikova MV (2006) Analysis of damped vibrations of linear viscoelastic plates with damping modeled with fractional derivatives. Signal Process 86(10):2703–2711

    Article  MATH  Google Scholar 

  4. Langlands TAM (2006) Solution of a modified fractional diffusion equation. Phys A Stat Mech Appl 367:136–144

    Article  MathSciNet  Google Scholar 

  5. Tenreiro Machado JA, Jesus IS, Galhano A, Cunha JB (2006) Fractional order electromagnetics. Signal Process 86(10):2637–2644

    Article  MATH  Google Scholar 

  6. Laskin N (2000) Fractional market dynamics. Phys A 287:482–492

    Article  MathSciNet  Google Scholar 

  7. Podlubny I (1999) Fractional order systems and PIλDμ -controllers. IEEE Trans Autom Control 44(1):208–214

    Article  MathSciNet  MATH  Google Scholar 

  8. Baranyi P, Yam Y (2006) Case study of the TP-model transformation in the control of a complex dynamic model with structural nonlinearity. IEEE Trans Ind Electron 53:895–904

    Article  Google Scholar 

  9. Baleanu D (2006) Fractional Hamiltonian analysis of irregular systems. Signal Process 86(10):2632–2636

    Article  MATH  Google Scholar 

  10. Razminia A, Majd VJ, Baleanu D (2011) Chaotic incommensurate fractional order Rossler system: active control and synchronization. Advances in Difference Equation 15:1–12

    Google Scholar 

  11. Sun S, Egerstedt M, Martin C (2000) Control theoretic smoothing splines. IEEE Trans Automat Control 45(12);2271–2279

    Article  MathSciNet  MATH  Google Scholar 

  12. Brockett RW, Mesarovic MD (1965) The reproducibility of multivariable systems. J Math Anal Appl 11:548–563

    Article  MathSciNet  MATH  Google Scholar 

  13. Panda R, Dash M (2006) Fractional generalized splines and signal processing. Signal Process 86(9):2340–2350

    Article  MATH  Google Scholar 

  14. Zhang Z, Tomlinson J, Enqvist P, Martin C (1995) Linear control theory, splines and approximation. In: Lund J (eds) Computation and control III. Birkhäuser, Boston, pp 269–288

    Google Scholar 

  15. Schoenberg I (1946) Contributions to the problem of approximation of equidistant data by analytic functions. Quart Appl Math 4:45–49

    MathSciNet  Google Scholar 

  16. Wahba G (1990) Spline models for observational data. CBMS–NSF Regional Conf. Ser. in Appl. Math., SIAM, Philadelphia

    Google Scholar 

  17. Jonsson U, Martin C (2007) Approximation with the output of linear control systems. J Math Anal Appl 329:798–821

    Article  MathSciNet  Google Scholar 

  18. Shapiro JH (2008) On the outputs of linear control systems. J Math Anal Appl 340:116–125

    Article  MathSciNet  MATH  Google Scholar 

  19. Egerstedt M, Martin C (2003) Statistical estimates for generalized splines. ESAIM Control Optim Calc Var 9:553–562 (electronic)

    Google Scholar 

  20. Zhou Y, Egerstedt M, Martin C (2001) Optimal approximation of functions. Commun Inf Syst 1(1):101–112

    MathSciNet  MATH  Google Scholar 

  21. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  22. Loverro A (2004) Fractional calculus: history, definitions and applications for the engineer. University of Notre Dame, Notre Dame

    Google Scholar 

  23. Podlubny I (2005) Fractional derivatives: history, theory, application. Utah State University, Utah

    Google Scholar 

  24. Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    MATH  Google Scholar 

  25. Adams RA, Fournier JF (2003) Sobolev spaces, 2nd edn. Academic, New York

    MATH  Google Scholar 

  26. Matignon D, Novel BD Some results on controllability and observability of finite dimensional fractional differential equations

    Google Scholar 

  27. Oldham KB, Spanier J (1974) “The fractional calculus”, mathematics in science and engineering. Academic, New York

    Google Scholar 

  28. Bonilla B, Rivero M, Trujillo JJ (2007) On systems of linear fractional differential equations with constant coefficients. Appl Math Comput 187:68–78

    Article  MathSciNet  MATH  Google Scholar 

  29. Folland GB (1999) Real analysis, modern techniques and their applications. Wiley, New York

    MATH  Google Scholar 

  30. Podlubny I (1999) “Fractional differential equations”, mathematics in science and engineering V198. Acadamic, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Johari Majd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Razminia, A., Majd, V.J., Dizaji, A.F. (2012). A Note on the Sequential Linear Fractional Dynamical Systems from the Control System Viewpoint and L 2 -Theory. In: Baleanu, D., Machado, J., Luo, A. (eds) Fractional Dynamics and Control. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0457-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0457-6_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0456-9

  • Online ISBN: 978-1-4614-0457-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics