Skip to main content

A Fractional Order Dynamical Trajectory Approach for Optimization Problem with HPM

  • Chapter
  • First Online:
Fractional Dynamics and Control

Abstract

In this paper, the homotopy perturbation method (HPM) is applied to solve nonlinear programming (NLP) problem on the basis of the fractional order differential equations system. The trajectory of the proposed fractional order dynamical system is approached to the optimal solution for optimization problem. The multistage strategy is used to show this behavior of the system trajectory in large timespan. The ability of the method to obtain approximate analytical solutions was shown by comparisons among the multistage HPM, the standard HPM and the fourth order Runge–Kutta method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luenberger DG (1973) Introduction to linear and nonlinear programming. Addison-Wesley, California

    MATH  Google Scholar 

  2. Sun W, Yuan YX (2006) Optimization theory and methods: Nonlinear programming. Springer, New York

    MATH  Google Scholar 

  3. Arrow KJ, Hurwicz L, Uzawa H (1958) Studies in linear and non-linear programming. Stanford University Press, California

    MATH  Google Scholar 

  4. Rosen JB (1961) The gradient projection method for nonlinear programming: Part II nonlinear constraints. SIAM J Appl Math 9:514–532

    Article  Google Scholar 

  5. Fiacco AV, Mccormick GP (1968) Nonlinear programming: Sequential unconstrained minimization techniques. Wiley, New York

    MATH  Google Scholar 

  6. Yamashita H (1976) Differential equation approach to nonlinear programming. Math Program 18:155–168

    Article  Google Scholar 

  7. Wang S, Yang XQ, Teo KL (2003) A unified gradient flow approach to constrained nonlinear optimization problems. Comput Optim Appl 25:251–268

    Article  MathSciNet  MATH  Google Scholar 

  8. Jin L, Zhang L-W, Xiao X (2007) Two differential equation systems for equality-constrained optimization. Appl Math Comput 190:1030–1039

    Article  MathSciNet  MATH  Google Scholar 

  9. Özdemir N, Evirgen F (2009) Solving NLP problems with dynamic system approach based on smoothed penalty function. Selçuk J Appl Math 10:63–73

    MATH  Google Scholar 

  10. Özdemir N, Evirgen F (2010) A dynamic system approach to quadratic programming problems with penalty method. Bull Malays Math Sci Soc 33:79–91

    MathSciNet  MATH  Google Scholar 

  11. Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    MATH  Google Scholar 

  12. Oldham KB, Spanier J (1974) The fractional calculus. Academic, New York

    MATH  Google Scholar 

  13. Podlubny I (1999) Fractional differential equations. Academic, New York

    MATH  Google Scholar 

  14. He JH (1997) Variational iteration method for delay differential equations. Commun Nonlinear Sci Numer Simul 2:235–236

    Article  Google Scholar 

  15. He JH (1998) Approximate analytical solution for seepage flow with fractional derivative in prous media. Comput Methods Appl Mech Eng 167: 57–68

    Article  MATH  Google Scholar 

  16. Adomian G (1988) A review of the decomposition method in applied mathematics. J Math Anal Appl 135:501–544

    Article  MathSciNet  MATH  Google Scholar 

  17. Adomian G (1994) Solving frontier problems of physics: the decomposition method. Kluwer, Boston

    MATH  Google Scholar 

  18. He JH (1999) Homotopy perturbation technique. Comput Meth Appl Mech Eng 178:257–262

    Article  MATH  Google Scholar 

  19. He JH (2000) A coupling method of homotopy technique and perturbation technique for nonlinear problems. Int J Nonlinear Mech 35:37–43

    Article  MATH  Google Scholar 

  20. He JH (2003) Homotopy perturbation method: A new nonlinear analytical technique. Appl Math Comput 135:73–79

    Article  MathSciNet  MATH  Google Scholar 

  21. He JH (2004) Comparison of homotopy perturbation method and homotopy analysis method. Appl Math Comput 156:527–539

    Article  MathSciNet  MATH  Google Scholar 

  22. He JH (2006) New interpretation of homotopy perturbation method. Int J Mod Phys B 20:2561–2568

    Article  Google Scholar 

  23. He JH (2006) Some asymptotic methods for strongly nonlinear equations. Int J Mod Phys B 20:1141–1199

    Article  MATH  Google Scholar 

  24. Abdulaziz O, Hashim I, Momani S (2008) Solving systems of fractional differential equations by homotopy-perturbation method. Phys Lett A 372:451–459

    Article  MathSciNet  MATH  Google Scholar 

  25. Momani S, Odibat Z (2007) Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys Lett A 365:345–350

    Article  MathSciNet  MATH  Google Scholar 

  26. Odibat Z, Momani S (2008) Modified homotopy perturbation method: Application to quadratic riccati differential equation of fractional order. Chaos Solitons Fractals 36:167–174

    Article  MathSciNet  MATH  Google Scholar 

  27. Baleanu D, Golmankhaneh Alireza K, Golmankhaneh Ali K (2009) Solving of the fractional non-linear and linear schroedinger equations by homotopy perturbation method. Romanian J Phys 52:823–832

    Google Scholar 

  28. Chowdhury MSH, Hashim I (2009) Application of homotopy-perturbation method to KleinGordon and sine-Gordon equations. Chaos Solitons Fractals 39:1928–1935

    Article  MathSciNet  MATH  Google Scholar 

  29. Hashim I, Chowdhury MSH (2008) Adaptation of homotopy-perturbation method for numeric-analytic solution of system of ODEs. Phys Lett A 372:470–481

    Article  MathSciNet  MATH  Google Scholar 

  30. Chowdhury MSH, Hashim I, Momani S (2009) The multistage homotopy-perturbation method: A powerful scheme for handling the Lorenz system. Chaos Solitons Fractals 40:1929–1937

    Article  MATH  Google Scholar 

  31. Yu Y, Li H-X (2009) Application of the multistage homotopy-perturbation method to solve a class of hyperchaotic systems. Chaos Solitons Fractals 42:2330–2337

    Article  MathSciNet  MATH  Google Scholar 

  32. Hashim I, Chowdhury MSH, Mawa S (2008) On multistage homotopy-perturbation method applied to nonlinear biochemical reaction model. Chaos Solitons Fractals 36:823–827

    Article  MATH  Google Scholar 

  33. Hock W, Schittkowski K (1981) Test examples for nonlinear programming codes. Springer, Berlin

    MATH  Google Scholar 

  34. Schittkowski K (1987) More test examples for nonlinear programming codes. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firat Evirgen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Evirgen, F., Özdemir, N. (2012). A Fractional Order Dynamical Trajectory Approach for Optimization Problem with HPM. In: Baleanu, D., Machado, J., Luo, A. (eds) Fractional Dynamics and Control. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0457-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0457-6_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0456-9

  • Online ISBN: 978-1-4614-0457-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics