Skip to main content

Mind and Space

  • Chapter
  • First Online:
Brain, Mind and Consciousness
  • 1964 Accesses

Abstract

This chapter describes various approaches to complexity and entropy in the central nervous system that may explain time and space changes in neural synchronization and coherence. These changes in brain complexity are likely the basis for discrete mental states that, through their differences, enable recognition and awareness of the external and internal world. According to this concept, the image of the world emerges as a consequence of creating order arising from nonlinear activities of large groups of neurons. These highly organized nonlinear processes are a consequence of high system complexity that occurs when the system involves a large number of interlinked and simultaneously active neural assemblies and runs in a desynchronized parallel distributed mode that can lead to self-organization. These levels of complexity and entropy within the brain likely present basic code that enables mental and physical space to be connected and corresponding differences and their recognition in mental and physical space to be defined. This approach provides the possibility of studying “neurogeometry” as a geometrical model of the functional architecture of the brain, which, through neural complexities, can reflect the geometry of the external space in the mental space. Within this context, the solution to the binding problem could principally use similar mathematical approaches to those studied in physics, and also include descriptions of how specific observers “define” reality and create observer-specific geometry of the space, such as in the general theory of relativity and other theoretical concepts in physics that take into account the role of the observer in the physical world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agre PE. Computation and human experience. Cambridge: Cambridge University Press; 1997.

    Google Scholar 

  • Albert D. Quantum mechanics and experience. Cambridge, MA: Harvard University Press; 1992.

    Google Scholar 

  • Alkire MT. Loss of effective connectivity during general anesthesia. Int Anesthesiol Clin. 2008;46:55–73.

    PubMed  Google Scholar 

  • Allen HA, Liddle PF, Frith CD. Negative features, retrieval processes, and verbal fluency in schizophrenia. Br J Psychiatry. 1993;163:769–75.

    Google Scholar 

  • Ashby WR. Principles of the self-organizing dynamic system. J Gen Psychol. 1947;37:125–8.

    PubMed  Google Scholar 

  • Aspect A. Bell’s inequality test: more ideal than ever. Nature. 1999;398:189–90.

    Google Scholar 

  • Aspect A, Dalibard J, Roger G. Experimental test of Bell’s inequalities using time- varying analyzers. Phys Rev Lett. 1982;49:1804–7.

    Google Scholar 

  • Baars BJ. A cognitive theory of consciousness. Cambridge: Cambridge University Press; 1988.

    Google Scholar 

  • Baars BJ. The conscious access hypothesis: origins and recent evidence. Trends Cogn Sci. 2002;6:47–52.

    PubMed  Google Scholar 

  • Balian R. Entropy – protean concept. Poincaré Seminar. 2003;2:119–45.

    Google Scholar 

  • Ballentine LE, Jarrett J. Bell’s theorem: does quantum mechanics contradict relativity? Am J Phys. 1997;55:785–92.

    Google Scholar 

  • Bass L. A quantum-mechanical mind-body interaction. Found Phys. 1975;5:159–72.

    Google Scholar 

  • Beck F, Eccles JC. Quantum aspects of brain activity and the role of consciousness. Proc Natl Acad Sci USA. 1992;89:11357–61.

    PubMed  Google Scholar 

  • Beiser A. Concepts of modern physics. 5th ed. New York: Mc Graw Hill; 1995.

    Google Scholar 

  • Bell J. Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press; 1987.

    Google Scholar 

  • Bob P. Hypnotic abreaction releases chaotic patterns of electrodermal activity during dissociation. Int J Clin Exp Hypn. 2007;55:435–56.

    PubMed  Google Scholar 

  • Bob P. Quantum science and the nature of mind. J Mind Behav. 2009;30:1–14.

    Google Scholar 

  • Bob P, Svetlak M. Dissociative states and neural complexity. Brain Cogn. 2011;75:188–95.

    Google Scholar 

  • Bob P, Susta M, Gregusova A, Jasova D. Dissociation, cognitive conflict and nonlinear patterns of heart rate dynamics in patients with unipolar depression. Prog Neuropsychopharmacol Biol Psychiatry. 2009a;33:141–5.

    PubMed  Google Scholar 

  • Bob P, Susta M, Chladek J, Glaslova K, Palus M. Chaos in schizophrenia associations, reality or metaphor? Int J Psychophysiol. 2009b;73:179–85.

    PubMed  Google Scholar 

  • Bob P, Palus M, Susta M, Glaslova K. Sensitization, epileptic-like symptoms and local synchronization in patients with paranoid schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:143–6.

    PubMed  Google Scholar 

  • Bohr N. Atomic physics and human knowledge. New York: Wiley; 1958.

    Google Scholar 

  • Boyer CB. History of mathematics. New York: Wiley; 1968.

    Google Scholar 

  • Brewin CR. Autobiographical memory for trauma: update on four controversies. Memory. 2007;15:227–48.

    PubMed  Google Scholar 

  • Brillouin L. Science and information theory. New York: Academic Press; 1956.

    Google Scholar 

  • Callender C, Huggett N. Physics meets philosophy at the Planck scale. Cambridge: Cambridge University Press; 2001.

    Google Scholar 

  • Chaitin GJ. Godel’s theorem and information. Int J Theor Phys. 1982;22:941–54.

    Google Scholar 

  • Crick F. The astonishing hypothesis. The scientific search for the soul. London: Simon and Schuster; 1994.

    Google Scholar 

  • Crick F, Clark J. “The astonishing hypothesis”. An interview. J Conscious Stud. 1994;1(1): 17–24.

    Google Scholar 

  • Crick F, Koch C. The problem of consciousness. Sci Am. 1992;267(3):153–9.

    Google Scholar 

  • Davis AV, Paulsen JS, Heaton RK, Jeste DV. Assessment of the semantic network in chronic schizophrenia. J Int Neuropsychol Soc. 1995;1:132.

    Google Scholar 

  • Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222.

    PubMed  Google Scholar 

  • d’Espagnat B. Conceptual foundations of quantum mechanics. 2nd ed. Reading MA: Benjamin; 1976.

    Google Scholar 

  • Dierig S. Extending the neuron doctrine: Carl Ludwig Schleich (1859–1922) and his reflections on neuroglia at the inception of the neural-network concept in 1894. Trends Neurosci. 1994;17:449–52.

    PubMed  Google Scholar 

  • Duda RO, Hart PE, Stork DG. Pattern Classification. New York: Wiley-Interscience; 2000.

    Google Scholar 

  • Einstein A. Relativity the special and general theory. Pi Press: New York (Originally published 1916); (1916/2005).

    Google Scholar 

  • Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys Rev. 1935;47:777–80.

    Google Scholar 

  • Elbert T, Ray WJ, Kowalik ZJ, Skinner JE, Graf KE, Birbaumer N. Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiol Rev. 1994;74:1–47.

    PubMed  Google Scholar 

  • Fell J, Fernández G, Klaver P, Elger CE, Fries P. Is synchronized neuronal gamma activity relevant for selective attention? Brain Res Rev. 2003;42:265–72.

    PubMed  Google Scholar 

  • Feynman RP, Leighton RB, Sands M. The Feynman lectures on physics. San Francisco: Pearson/Addison Wesley; 2005.

    Google Scholar 

  • Ford JM, Mathalon DH. Neural synchrony in schizophrenia. Schizophr Bull. 2008;34:904–6.

    PubMed  Google Scholar 

  • Freeman WJ. The physiology of perception. Sci Am. 1991;264:78–85.

    PubMed  Google Scholar 

  • Freeman WJ. Mesoscopics neurodynamics: from neuron to brain. J Physiol Paris. 2000;94: 303–22.

    PubMed  Google Scholar 

  • Freeman WJ. Biocomplexity: adaptive behavior in complex stochastic dynamical systems. Biosystems. 2001;59:109–23.

    PubMed  Google Scholar 

  • Frieden BR. Science from fisher information. Cambridge: Cambridge University. Press; 2004.

    Google Scholar 

  • Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci. 2009;32:209–24.

    PubMed  Google Scholar 

  • Friston KJ, Tononi G, Sporns O, Edelman GM. Characterising the complexity of neuronal interactions. Hum Brain Mapp. 1995;3:302–14.

    Google Scholar 

  • Fröhlich H. Long range coherence and energy storage in biological systems. Int J Quant Chem. 1968;2:641–64.

    Google Scholar 

  • Fröhlich H. Long range coherence and the actions of enzymes. Nature. 1970;228:1093.

    PubMed  Google Scholar 

  • Fröhlich H. The extraordinary dielectric properties of biological materials and the actions of enzymes. Proc Natl Acad Sci USA. 1975;72:4211–5.

    PubMed  Google Scholar 

  • Ghirardi GC, Grassi R, Pearle P. Relativistic dynamical reduction models: general framework and examples. Found Phys. 1990;20:271–316.

    Google Scholar 

  • Goldberg TE, Weinberger DR. Thought disorder in schizophrenia: a reappraisal of older formulations and an overview of some recent studies. Cogn Neuropsychiatry. 2000;5:1–19.

    Google Scholar 

  • Gottesman D, Chuang I. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature. 1999;402:390–3.

    Google Scholar 

  • Groth-Marnat G. Handbook of psychological assessment. Hoboken, N.J.: John Wiley and Sons; 2003.

    Google Scholar 

  • Hagan S, Hameroff SR, Tuszynski JA. Quantum computation in brain microtubules: decoherence and biological feasibility. Phys Rev E. 2002;65:061901–9101.

    Google Scholar 

  • Hameroff SR, Penrose R. Orchestrated reduction of quantum coherence in brain microtubules: a model for consciousness. Neural Netw World. 1995;5:793.

    Google Scholar 

  • Hameroff SR, Penrose R. Orchestrated reduction of quantum coherence in brain microtubules: a model of consciousness. In: Hameroff S, Kaszniak A, editors. Toward a science of consciousness. Cambridge, MA: MIT Press; 1996. p. 507–40.

    Google Scholar 

  • Haroche S, Raimond JM. Quantum computing: dream or nightmare? Physics Today. 1996;8:51–2.

    Google Scholar 

  • Haynie D. Biological thermodynamics. Cambridge: Cambridge University Press; 2001.

    Google Scholar 

  • Haynie DT. Biological thermodynamics. New York: Cambridge University Press; 2008.

    Google Scholar 

  • Heisenberg W. Physics and philosophy. The revolution in modern science. New York: Harper and Row; 1958.

    Google Scholar 

  • Hess B, Mikhailov A. Self-organization in living cells. Science. 1994;264:223–4.

    PubMed  Google Scholar 

  • Himelhoch S, Taylor SF, Goldman RS, Tandon R. Frontal lobe tasks, antipsychotic medication, and schizophrenic syndromes. Biol Psychiatry. 1996;39:227–9.

    PubMed  Google Scholar 

  • Hoffman RE, Kirstein L, Stopek S, Cicchetti DV. Apprehending schizophrenic dicourse: a structural analysis of the listener’s task. Brain Lang. 1982;15:207–33.

    PubMed  Google Scholar 

  • Hofstadter DR. Gödel, Escher, Bach: an eternal golden braid. New York: Basic Books; 1999.

    Google Scholar 

  • Igamberdiev AU. Physical limits of computation and emergence of life. Biosystems. 2007;90: 340–9.

    PubMed  Google Scholar 

  • Jain AK, Duin RPW, Mao J. Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell. 2000;22:4–37.

    Google Scholar 

  • Jensen O, Kaiser J, Lachaux JP. Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci. 2007;30:317–24.

    PubMed  Google Scholar 

  • Jung CG. The psychology of dementia praecox. New York: Journal of Nervous and Mental Disease Publishing Company; 1909.(also in collected works of CG Jung 3).

    Google Scholar 

  • Kantz H, Schreiber T. Nonlinear time series analysis. Cambridge: Cambridge University Press; 1997.

    Google Scholar 

  • Kanwisher N. Neural events and perceptual awareness. Cognition. 2001;79:89–113.

    PubMed  Google Scholar 

  • Karolyhazy F. Gravitation and quantum mechanics of macroscopic objects. IL Nuovo Cimento A. 1966;42:309–42.

    Google Scholar 

  • Kenardy J, Smith A, Spence SH, Lilley PR, Newcombe P, Dob R, et al. Dissociation in children’s trauma narratives: an exploratory investigation. J Anxiety Disord. 2007;21:456–66.

    PubMed  Google Scholar 

  • Kent GH, Rosonoff AJ. A study of associations in insanity. Am J Insanity. 1910 66/67:37–34; 317–390.

    Google Scholar 

  • Kline P. The handbook of psychological testing. New York, NY: Routledge; 2000.

    Google Scholar 

  • Kragh H. Cosmology and controversy. Princeton: Princeton University Press; 1999.

    Google Scholar 

  • Laurikainen KV. Beyond the atom: the philosophical thought of Wolfgang Pauli. Berlin: Springer Verlag; 1988.

    Google Scholar 

  • Lee KH, Williams LM, Breakspear M, Gordon E. Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Rev. 2003;41: 57–78.

    PubMed  Google Scholar 

  • Maniscalco S, Francica F, Zaffino RL, Lo Gullo N, Plastina F. Protecting entanglement via the quantum Zeno effect. Phys Rev Lett. 2008;100:090503.

    PubMed  Google Scholar 

  • Manschreck TC, Maher BA, Rucklos ME, White MT. The predictability of thought disordered speech in schizophrenic patients. Br J Psychiatry. 1979;134:595–601.

    PubMed  Google Scholar 

  • Manschreck TC, Maher BA, Ader DN. Formal thought disorder, the type token ratio and disturbed voluntary movement in schizophrenia. Br J Psychiatry. 1981;139:7–15.

    PubMed  Google Scholar 

  • Marshall IN. Consciousness and Bose-Einstein condensates. New Ideas Psychol. 1989;7:73–83.

    Google Scholar 

  • Mashour GA. Consciousness unbound: toward a paradigm of general anesthesia. Anesthesiology. 2004;100:428–33.

    PubMed  Google Scholar 

  • Mashour GA. Toward a general theory of unconscious processes in psychoanalysis and anesthesiology. J Am Psychoanal Assoc. 2008;56:203–22.

    PubMed  Google Scholar 

  • Moran LJ, Mefferd Nr RB, Kimble Nr JP. Idiodynamic sets in word association. Psychol Monogr. 1964;78:1–22.

    Google Scholar 

  • Mould RA. The inside observer in quantum mechanics. Found Phys. 1995;25:1621–9.

    Google Scholar 

  • Mould RA. Consciousness and quantum mechanics. Found Phys. 1998;28:1703–18.

    Google Scholar 

  • Nagel E, Newman J. Gödel’s Proof. New York: New York Unversity Press; 2002.

    Google Scholar 

  • Nielsen MA, Chuang IL. Quantum computation and quantum information. Cambridge: Cambridge University Press; 2000.

    Google Scholar 

  • Pashler H. The psychology of attention. Cambridge MA: MIT Press; 1998.

    Google Scholar 

  • Pauli W. Theory of relativity. New York: Dover Publications, Inc.; 1958.

    Google Scholar 

  • Paulsen JS, Romero R, Chan A, Davis AV, Heaton RK, Jeste DV. Impairment of the semantic network in schizophrenia. Psychiatry Res. 1996;63:109–21.

    PubMed  Google Scholar 

  • Payne JD, Jackson ED, Ryan L, Hoscheidt S, Jacobs JW, Nadel L. The impact of stress on neutral and emotional aspects of episodic memory. Memory. 2006;14:1–16.

    PubMed  Google Scholar 

  • Peled A. Multiple constraint organization in the brain: a theory for schizophrenia. Brain Res Bull. 1999;49:245–50.

    PubMed  Google Scholar 

  • Penrose R. The Emperor´s new mind: concerning computers, minds, and the laws of physics. Oxford: Oxford University Press; 1989.

    Google Scholar 

  • Penrose R. Shadows of the mind: an approach to the missing science of consciousness. Oxford: Oxford University Press; 1994.

    Google Scholar 

  • Penrose R. The large the small and the human mind. Cambridge: The Press Syndicate of the University of Cambridge; 1997.

    Google Scholar 

  • Penrose R. Consciousness, the brain, and spacetime geometry: an addendum. Ann N Y Acad Sci. 2001;929:105–10.

    PubMed  Google Scholar 

  • Penrose R. Gravitational collapse: the role of general relativity. Gen Relat Gravit. 2002;34:1141–65.

    Google Scholar 

  • Penrose R. The road to reality: a complete guide to the laws of the universe. London: Jonathan Cape; 2004.

    Google Scholar 

  • Penrose R, Hameroff SR. What “gaps”? Reply to Grush and Churchland. J Conscious Stud. 1995;2:98–111.

    Google Scholar 

  • Perrot P. A to Z of thermodynamics. New York: Oxford University Press; 1998.

    Google Scholar 

  • Petitot J. The neurogeometry of pinwheels as a sub-Riemannian contact structure. J Physiol Paris. 2003;97:265–309.

    PubMed  Google Scholar 

  • Prigogine I, Stengers I. Order out of chaos: man’s new dialogue with nature. New York: Bantam; 1984.

    Google Scholar 

  • Rothstein J. Information, measurement, and quantum mechanics. Science. 1951;114:171–5.

    PubMed  Google Scholar 

  • Rucker R. Infinity and the mind: the science and philosophy of the infinite. Princeton, N.J.: Princeton University Press; 1982.

    Google Scholar 

  • Sauseng P, Klimesch W. What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci Biobehav Rev. 2008;32:1001–13.

    PubMed  Google Scholar 

  • Schlosshauer M. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev Mod Phys. 2005;76:1267–305.

    Google Scholar 

  • Schrödinger E. What is life? The physical aspect of the living cell. Cambridge: Cambridge University Press; 1944.

    Google Scholar 

  • Schwartz JM, Stapp HP, Beauregard M. Quantum physics in neuroscience and psychology: a neurophysical model of mind-brain interaction. Philos Trans R Soc Lond B Biol Sci. 2005;360: 1309–27.

    PubMed  Google Scholar 

  • Scott A, editor. Encyclopedia of nonlinear science. New York: Routledge, Taylor and Francis Group; 2005.

    Google Scholar 

  • Shakow D. Kent–Rosanoff association and its implications for segmental set theory. Schizophr Bull. 1980;6:676–85.

    PubMed  Google Scholar 

  • Shannon CE. A mathematical theory of communication. AT&T TECH J. 1948;27:379–423. and 623–656.

    Google Scholar 

  • Shannon CE, Weaver W. A mathematical theory of communication. Champaign, IL: University of Illinois Press; 1963.

    Google Scholar 

  • Smolin L. Atoms of space and time. Sci Am. 2004;290:66–75.

    PubMed  Google Scholar 

  • Sporns O, Tononi G, Edelman GM. Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw. 2000;13:909–22.

    PubMed  Google Scholar 

  • Stapp HP. Quantum theory and the role of mind in nature. Found Phys. 2001;31:1465–99.

    Google Scholar 

  • Stapp HP. Quantum leaps in philosophy of mind: reply to bourget’s critique. J Conscious Stud. 2004;11:43–9.

    Google Scholar 

  • Stapp HP. Quantum interactive dualism: an alternative to materialism. J Conscious Stud. 2005;12: 43–58.

    Google Scholar 

  • Sudarshan ECG, Misra B. The Zeno’s paradox in quantum theory. J Math Phys. 1977;18:756–63.

    Google Scholar 

  • Szilard L. On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings [In German published in 1929, Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen, Zeitschrift für Physik, 53, 840–856]. In English published in 1964, Behav Sci. 1929/1964;9:301–10.

    Google Scholar 

  • Tegmark M. The importance of quantum decoherence in brain processes. Phys Rev E. 2000;61: 4194–206.

    Google Scholar 

  • Teicher M, Andersen SL, Polcari A, Anderson CM, Navalta CP, Kim DM. The neurobiological consequences of early stress and childhood maltreatment. Neurosci Biobehav Rev. 2003;27:3–44.

    PubMed  Google Scholar 

  • Teicher M, Tomoda A, Andersen SL. Neurobiological consequences of early stress and childhood maltreatment: Are results from human and animal studies comparable? Ann N Y Acad Sci. 2006;1071:313–23.

    PubMed  Google Scholar 

  • Tononi G, Edelman GM. Schizophrenia and the mechanisms of conscious integration. Brain Res Rev. 2000;31:391–400.

    PubMed  Google Scholar 

  • Tononi G, Edelman GM. Consciousness and complexity. Science. 1998;282:1846–51.

    PubMed  Google Scholar 

  • Tononi G, Edelman GM, Sporns O. Complexity and coherency: integrating information in the brain. Trends Cogn Sci. 1998a;2:474–84.

    PubMed  Google Scholar 

  • Tononi G, Sporns O, Edelman GM. A complexity measure for selective matching of signals by the brain. Proc Natl Acad Sci USA. 1996;93:3422–7.

    PubMed  Google Scholar 

  • Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11:100–13.

    PubMed  Google Scholar 

  • Uhlhaas PJ, Haenschel C, Nikolić D, Singer W. The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull. 2008;34:927–43.

    PubMed  Google Scholar 

  • Valentine ER. Neural nets: from Hartley and Hebb to Hinton. J Math Psychol. 1989;33:348–57.

    Google Scholar 

  • Vinogradov S, Kirkland J, Poole JH, Drexler M, Ober BA, Shenaut GK. Both processing speed and semantic memory organization predict verbal fluency in schizophrenia. Schizophr Res. 2002;8:171–81.

    Google Scholar 

  • Volkenstein MV. Entropy and information. Basel, Boston, Berlin: Birkhauser Verlag AG; 2009.

    Google Scholar 

  • von Laue M. History of physics. New York: Academic Press; 1950.

    Google Scholar 

  • Von Neumann J. Mathematical foundations of quantum mechanics. Princeton: Princeton University Press; 1955.

    Google Scholar 

  • Wheeler JA, Zurek WH. Quantum theory and measurement. New Jersey: Princeton University Press; 1983.

    Google Scholar 

  • Womelsdorf T, Fries P. Neuronal coherence during selective attentional processing and sensory-motor integration. J Physiol Paris. 2006;100:182–93.

    PubMed  Google Scholar 

  • Womelsdorf T, Fries P. The role of neuronal synchronization in selective attention. Curr Opin Neurobiol. 2007;17:154–60.

    PubMed  Google Scholar 

  • Woolf N, Hameroff S. A quantum approach to visual consciousness. Trends Cogn Neurosci. 2001;5:472–8.

    Google Scholar 

  • Zaccai G, Massoulié J, David F. From cell to brain: the cytoskeleton, intra- and inter-cellular ­communication, the central nervous system. Amsterdam: Elsevier; 1998.

    Google Scholar 

  • Zurek WH. Maxwell’s Demon, Szilard’s engine and quantum measurements. In: Moore GT, Scully MO, editors. Frontiers of nonequilibrium statistical physics. New York: Plenum Press; 1984. p. 151–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Bob .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bob, P. (2012). Mind and Space. In: Brain, Mind and Consciousness. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0436-1_6

Download citation

Publish with us

Policies and ethics