Skip to main content

Abstract

Soybean (Glycine max (L.) Merrill.) is one of the most important oil crops of the world which also has tremendous importance as a food legume. Soy oil finds a variety of uses for domestic and industrial purposes besides its use in several food preparations and animal feed. Having 53% global production share of all oilseed crops, soybean finds an important place in most of the agricultural production systems of major countries including USA, China, Brazil, Argentina and India. It has found an important place in major crop improvement programs and consequently, there has been a considerable increase in its production and productivity over the last two decades. Soybean is a diploidized ancient tetraploid. Though it has a relatively large and complex genome, significant progress has been made towards using methods of genome analysis and molecular cytogenetic tools to elucidate its special function as well as to develop improved cultivars. A number of stable, high-yielding and biotic and abiotic stress resistant varieties have been developed using various traditional and modern crop improvement tools. Definite strides have been made in alien gene introgressions, molecular marker technology, micropropagation, genetic transformation, and marker-assisted breeding. Herbicide-tolerant transgenic soybean has witnessed a huge commercial success and made it a leading biotech crop. At the same time, modification of fatty acid profile of soy oil and improvement in protein content and nutritional quality have established soybean as one of the most viable commercial crop. This chapter discusses soybean as a crop in detail covering all major aspects related to its history and domestication, cytogenetics, breeding behavior, genetic improvement as well as its oil and nutritional quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angenon G, Thu TT (2011) Genetic transformation. In: Pratap A, Kumar J (eds) Biology and breedign of food legumes. CABI, Oxfordshire, UK, pp 178–192

    Google Scholar 

  • Arelli PR, Young LD (2009) JTN-5109 soybean germplasm resustanet to nematode population infecting cv. Hartwig. ASA-CSSA-SSSA 2009 International Annual Meetings: Footprints in the landscape: sustainability through plant and and soil science. November 4. Agronomy Society of America, The Abstracts, p 133:268–18

    Google Scholar 

  • Arelli PR, Young LD, Mengistu A (2006) Registration of high yielding and multiple disease ­resistant soybean germplasm JTN-5503. Crop Sci 46:2723–2724

    Article  Google Scholar 

  • Arelli PR, Pantalone VR, Allen FL, Mengistu A (2007) Registration of soybean germplasm JTN-5303. J Plant Regis 1:69–70

    Article  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–219

    Article  CAS  Google Scholar 

  • Bai YN, Gai JY (2003) Development of soybean cytoplasmic-nuclear male sterile line NJCMS2A and restorability of its male fertility. Sci Agric Sinica 36:740–745

    Google Scholar 

  • Bailey MA, Boerma HR, Parrott WA (1993) Genotype effects on proliferative embryogenesis and plant regeneration of soybean. In Vitro Cell Dev Biol 29:102–108

    Article  Google Scholar 

  • Barwale UB, Kerns HR, Widholm JM (1986) Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis. Planta 167:473–481

    Article  CAS  Google Scholar 

  • Behrens MR, Mutlu N, Chakraborty S, Dumitru R, Jiang WZ, LaVallee BJ, Herman PL, Clemente TE, Weeks DP (2007) Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science 316:1185–1188

    Article  PubMed  CAS  Google Scholar 

  • Bernard RL, Cremeens CR (1975) Inheritance of the Eldorado male-sterile trait. Soybean Genet Newsl 2:37–39

    Google Scholar 

  • Bhatnagar PS, Tiwari SP, Singh C (1992) Disrupting the negative association between oil and protein content in soybean seeds through mutagenesis. Mutation Breed Newsl 39:7

    Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  PubMed  CAS  Google Scholar 

  • Boerma HR, Cooper RL (1978) Increased female fertility associated with the ms1 locus in soybeans. Crop Sci 18:344–346

    Article  Google Scholar 

  • Brim CA, Burton JW (1979) Recurrent selection in soybeans II. Selection for increased percent protein in seeds. Crop Sci 19:494–498

    Article  Google Scholar 

  • Brim CA, Cockerham CC (1961) Inheritance of quantitative characters in soybeans. Crop Sci 1:187–190

    Article  Google Scholar 

  • Brim CA, Stuber CW (1973) Application of genetic male sterility to recurrent selection schemes in soybeans. Crop Sci 13:528–530

    Article  Google Scholar 

  • Brim CA, Young MF (1971) Inheritance of a male-sterile character in soybeans. Crop Sci 11:564–566

    Article  Google Scholar 

  • Brim CA, Schutz WM, Collins FI (1968) Maternal effect on fatty acid composition and oil content of soybean, Glycine max (L.) Merrill. Crop Sci 8:517–518

    Article  CAS  Google Scholar 

  • Brown AHD, Grant JE, Rullen R (1986) Outcrossing and paternity in Glycine argyrea by paired fruit analysis. Biol J Linn Soc 29:283–294

    Article  Google Scholar 

  • Buhr T, Sato S, Ebrahim F, Xing A, Zhou Y, Mathiesen M, Schweiger B, Kinney A, Staswick P, Clemente T (2002) Ribozyme termination of RNA transcripts down-regulate seed fatty acid genes in transgenic soybean. Plant J 30:155–163

    Article  PubMed  CAS  Google Scholar 

  • Burton JW (1997) Soybean (Glycine max (L.) Merr.). Field Crops Res 53:171–186

    Article  Google Scholar 

  • Burton JM, Brim CA (1981) Recurrent selection in soybeans III. Selection for increased oil in seeds. Crop Sci 21:31–34

    Article  Google Scholar 

  • Burton JW, Carver BF (1993) Selection amongst families vs. selfed half-sib or full-sib families in autogamous crops. Crop Sci 33:21–28

    Article  Google Scholar 

  • Burton JW, Koinange EMK, Brim CA (1990) Recurrent selfed progency selection for yield in soybean using male sterility. Crop Sci 30:1222–1226

    Article  Google Scholar 

  • Buss GR (1983) Inheritance of a male-sterile mutant from irradiated Essex soybeans. Soybean Genet Newsl 10:104–108

    Google Scholar 

  • Cahoon EB (2003) Genetic enhancement of soybean oil for industrial uses: prospects and challenges. Agbioforum 6:11–13

    Google Scholar 

  • Cardoso MB, Kaltchuk-Santos E, de Mundstock EC, Bodanese-Zanettini MH (2004) Initial ­segmentation patterns of microspores and pollen viability in soybean cultured anthers: indication of chromosome doubling. Braz Arch Biol Technol 47:703–712

    Article  Google Scholar 

  • Carlson JB, Lersten NR (1987) Reproductive morphology. In: Wilcox JR (ed) Soybean, improvement, production and uses. Agronomy monographs, 2nd edn. No.16. American Society of Agronomy (ASA), Madison, pp 303–416

    Google Scholar 

  • Carpenter JA, Fehr WR (1986) Genetic variability for desirable agronomic traits in populations containing Glycine soja germplasm. Crop Sci 26:681–686

    Article  Google Scholar 

  • Carrao Panizzi MC, Gontijo Mandarino JM (1994) Soybean for human consumption: nutritional quality, processing and utilization. In: Tropical soybean: improvement and production. Food and Agricultural Organization of the United Nations, Rome, pp 241–254

    Google Scholar 

  • Carver BF, Burton JW, Willson RF, Carter JE Jr (1986) Cumulative response to various recurrent selections schemes in soybean: oil quality and correlated agronomic traits. Crop Sci 26:853–858

    Article  Google Scholar 

  • Caviness CE (1966) Estimates of nature cross-pollination in Jackson soybeans in Arkanasss. Crop Sci 6:211–212

    Article  Google Scholar 

  • Cervantes-Martinez IG, Xu M, Zhang L, Huang Z, Kato KK, Horner HT, Palmer RG (2005) Molecular mapping of male-sterile loci ms2 and ms9 in soybean. Crop Sci 47:374–379

    Article  CAS  Google Scholar 

  • Chakraborty N, Curley J, Frederick RD, Hyten DL, Nelson RL, Hartman GL, Diers BW (2009) Mapping and confirmation of a new allele at Rpp 1 from soybean PI 594538A conferring RB lesion type resistance to soybean rust. Crop Sci 49:783–790

    Article  CAS  Google Scholar 

  • Chaky JM, Specht JE, Cregan PB (2004) Advanced backcross QTL analysis in a mating between Glycine max and Glycine soja. Plant & animal genomes XII Conference, January 10-14, San Diego, CA

    Google Scholar 

  • Chaturvedi SK, Gupta DS, Jain R (2011) Biology of food legumes. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI, Oxfordshire

    Google Scholar 

  • Chaudhari HK, Davis WH (1977) A new male-sterile strain in Wabash soybeans. J Hered 6:266–267

    Google Scholar 

  • Chen R, Matsui K, Ogawa M, Oe M, Ochiai M, Kawashima H, Sakuradani E, Shimizu S, Ishimoto M, Hayashi M, Murooka Y, Tanaka Y (2006) Expression of Δ6, Δ5 desaturase and GLELO elongase genes from Mortierella alpina for production of arachidonic acid in soybean [Glycine max (L.) Merrill] seeds. Plant Sci 170:399–406

    Article  CAS  Google Scholar 

  • Chiari L, Naoe LK, Piovesan ND, José IC, Cruz CD, Moreira MA, Gonçalves de Barros E (2006) Inheritance of isoflavone contents in soybean seeds. Euphytica 150:141–147

    Article  CAS  Google Scholar 

  • Clarindo WR, Carvalho CR, De Alves BMG (2007) Mitotic evidence for the tetraploid nature of Glycine max provided by high quality karyograms. Plant Syst Evol 26:101–107

    Article  Google Scholar 

  • Concibido VC, Young ND, Lange DA, Denny RL, Danesh D, Orf JH (1996) Targeted comparative genome analysis and qualitative mapping of a major partial-resistance gene to the soybean cyst nematode. Theor Appl Genet 93:234–241

    PubMed  CAS  Google Scholar 

  • Concibido VC, La Vallee B, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X (2003) Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet 106:575–582

    PubMed  CAS  Google Scholar 

  • Cooper RL (1990) Modified early generation testing procedure for yield selection in soybean. Crop Sci 30:417–419

    Article  Google Scholar 

  • Culter GH (1934) A simple method for making soybean hybrids. J Am Soc Agron 26:252–253

    Google Scholar 

  • Cunha WG, Tinoco MLP, Pancotti HL, Ribeiro RE, Aragão FJL (2010) High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalate decarboxylase gene. Plant Pathol 59:654–660

    Article  CAS  Google Scholar 

  • Danesh D, Penuela S, Mudge J, Denny RL, Nordstrom H, Martinez JP, Young ND (1998) A bacterial artificial chromosome library for soybean and identification of clones near a major cyst nematode resistance gene. Theor Appl Genet 96:196–202

    Article  CAS  Google Scholar 

  • Darbani B, Eimanifar A, Stewart CN Jr, Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90

    Article  PubMed  CAS  Google Scholar 

  • Davis WH (1987) Process for forming seeds capable of growing hybrid soybean plants. US Patent 4:648-204

    Google Scholar 

  • de Moraes AP, Bonadese-Zanettini MH, Callegari-Jacques SM, Kaltchuk-Santos E (2004) Effect of temperature shock on soybean microspore embryogenesis. Braz Arch Biol Technol 47:537–544

    Article  Google Scholar 

  • Delannay X, Palmer RG (1982) Genetics and cytology of the ms4 male-sterile soybean. J Hered 73:219–223

    Google Scholar 

  • Ding D, Cui Z, Gai J (1998) Development of cytological features of the cytoplasmic-nuclear male-sterile soybean line NJCMS1A. Soybean Genet Newsl 25:34–35

    Google Scholar 

  • Ding YL, Zhao TJ, Gai JY (2008) Genetic diversity and ecological differentiation of Chinese annual wild soybean (Glycine soja). Biodivers Sci 16:133–142

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL, Harbison C (2003) Chloroplast-expressed glutamine synthetase in Glycine and related Leguminosae: phylogeny, gene duplication, and ancient polyploidy. Syst Bot 28:567–577

    Google Scholar 

  • Doyle JJ, Doyle JL, Rauscher JT, Borwn AHD (2004) Evolution of the perennial soybean polyploidy complex (Glycine subgenus Glycine): a study of contrasts. Biol J Linn Soc 82:583–597

    Article  Google Scholar 

  • Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489

    Article  PubMed  CAS  Google Scholar 

  • Dufourmantel N, Tissot G, Goutorbe F, Garçon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58:659–668

    Article  PubMed  CAS  Google Scholar 

  • Dufourmantel N, Dubald M, Matringe M, Canard H, Garçon F, Job C, Kay E, Wisniewski JP, Ferullo JM, Pelissier B, Sailland A, Tissot G (2007) Generation and characterization of soybean and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. Plant Biotechnol J 5:118–133

    Article  PubMed  CAS  Google Scholar 

  • Eapen S (2008) Advances in development of transgenic pulse crops. Biotech Advances 26:162–168

    Article  Google Scholar 

  • Eckert H, La Vallee B, Schweiger BJ, Kinney AJ, Cahoon EB, Clemente T (2006) Co-expression of the borage Δ6 desaturase and the Arabidopsis Δ15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean. Planta 224:1050–1057

    Article  PubMed  CAS  Google Scholar 

  • Ertl DS, Fehr WR (1985) Agronomic performance of soybean genotypes from Glycine max  ×  Glycine soja crosses. Crop Sci 25:589–592

    Article  Google Scholar 

  • Fehr WR, Welke GK, Hammond EG, Duvick DN, Cianzio SR (1991) Inheritance of reduced palmitic acid content in seed oil of soybean. Crop Sci 31:88–89

    Article  CAS  Google Scholar 

  • Fehr WR, Welke GA, Hammond EG, Duvick DN, Cinzio SR (1992) Inheritance of reduced linolenic acid content in soybean genotypes A-16 and A-17. Crop Sci 32:903–906

    Article  CAS  Google Scholar 

  • Ferraz de Toledo JF, Alves de Almeida L, de Souza Kiihl RA, Carrao Panizzi MC, Kaster M, Miranda LC, Menosso OG (1994) Genetics and breeding In: Tropical soybean improvement and production, United Nations FAO, Rome, Italy, pp 19–36

    Google Scholar 

  • Finer JJ, Nagasawa A (1988) Development of an embryogenic suspension culture of soybean [Glycine max (L.) Merrill]. Plant Cell Tissue Org Cult 15:125–136

    Google Scholar 

  • Frasch R, Tasma IM, Bhattacharyya MK, Sandhu D (2010) Arabidopsis NPR1 function can be complemented by two soybean orthologues. UWSP Online Journal VIII

    Google Scholar 

  • Furutani N, Hidaka S, Kosaka Y, Shizukawa Y, Kanematsu S (2006) Coat protein gene-mediated resistance to soybean mosaic virus in transgenic soybean. Breed Sci 56:119–124

    Article  CAS  Google Scholar 

  • Gai JY, Xu DH, Gao Z, Abe YSJ, Fukushi H, Kitajima S (2000) Studies on the evolutionary relationship among eco-types of G. max and G. soja in China. Acta Agron Sinica 26:513–520

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Gazzoni DL (1994) Botany. In: Brazilian agricultural research enterprise, national soybean research center (EMBRAPA-CNPSo), comp. and ed. Tropical soybean improvement and production, United Nations FAO, Rome, Italy, p 254

    Google Scholar 

  • Gill N, Findley S, Walling JG, Hans C, Ma J, Doyle J, Stacey G, Jackson SA (2009) Molecular and chromosomal evidence for allopolyploidy in soybean. Plant Physiol 151:1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Githiri SM, Watanabe S, Harada K, Takahashi R (2006) QTL analysis of flooding tolerance in soybean at an early vegetative growth stage. Plant Breed 125:613–618

    Article  CAS  Google Scholar 

  • Graybosch RA, Palmer RG (1987) Analysis of a male-sterile character in soybeans. J Hered 78:66–70

    Google Scholar 

  • Graybosch RA, Palmer RG (1988) Male–sterility in soybean: An overview. American J Bot 75:144–56

    Google Scholar 

  • Graybosch RA, Edge ME, Dellanay X (1987) Somaclonal variation in soybean plants regenerated from the cotyledonary node tissue culture system. Crop Sci 27:803–806

    Google Scholar 

  • Griffor MC, Vodkin LO, Singh RJ, Hymowitz T (1991) Fluorescent in situ hybridization to soybean metaphase chromosomes. Plant Mol Biol 17:101–109

    Article  PubMed  CAS  Google Scholar 

  • Guard AT (1931) Development of floral organs of the soybean. Bot Gaz 91:97–102

    Article  Google Scholar 

  • Guo WT (1993) The history of soybean cultivation. Hehai University Press, Nanjing

    Google Scholar 

  • Guo X, Wang D, Gordon SG, Helliwell E, Smith T, Berry SA, St. Martin SK, Dorrance AE (2008) Genetic mapping of QTLs underlying partial resistance to Sclerotinia sclerotiorum in soybean PI 391589A and PI 391589B. Crop Sci 48:1129–1139

    Article  Google Scholar 

  • Guo J, Wang Y, Song C, Zhou J, Qiu L, Huang H, Wang Y (2010) A single origin and moderate bottleneck during domestication of soybean (Glycine max): implications from microsatellites and nucleotide sequences. Ann Bot. doi:10.1093/aob/mcq125

  • Hammond EG, Fehr WR (1983) Registration of A5 germplasm line of soybean. Crop Sci 23:192

    Google Scholar 

  • Han Y, Teng W, Yu K, Poysa V, Anderson T, Qiu L, Lightfoot DA, Li W (2008) Mapping QTL tolerance to phytophthora root rot in soybean using microsatellite and RAPD/SCAR derived markers. Euphytica 162:231–239

    Article  CAS  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Hartwig EE (1973) Varietal development. In: Caldwell BE (ed) Soybeans: improvement, production, and uses. American Society of Agronomy Publication No. 16. American Society of Agronomy, Madison, pp 187–210

    Google Scholar 

  • Herman EM, Helm RM, Jung R, Kinney AJ (2003) Genetic modification removes an immunodominant allergen from soybean. Plant Physiol 132:36–43

    Article  PubMed  CAS  Google Scholar 

  • Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technology 6:915–921

    Article  CAS  Google Scholar 

  • Howell RW, Brim CA, Rinne RW (1972) The plant geneticists contribution towards changing lipid and amino acid composition in soybean. J Am Oil Chem Soc 49:30–32

    Article  CAS  Google Scholar 

  • Hu CY, Yin GC, Bodanese Zanettini MH (1996) Haploid of soybean. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Kluwer Academic Publisher, Dordrecht, pp 377–395

    Google Scholar 

  • Hymowitz T (1970) On the domestication of the soybean. Econ Bot 24:408–421

    Article  Google Scholar 

  • Hymowitz T (2004) Speciation and cytogenetic. In: Boerma HR, Specht JE (eds) Soybeans: improvement production, and uses. Agronomy monographs, 3rd edn. No. 16, ASA-CSSA-SSSA, Madison, pp 97–136

    Google Scholar 

  • Hymowitz T, Palmer RG, Hadley HH (1972) Seed weight, protein, oil and fatty acid relationship within genus Glycine. Trop Agric 49:245–250

    CAS  Google Scholar 

  • Hyten DL, Smith JR, Frederick RD, Tucker ML, Song Q, Cregan PB (2009) Bulked segregant analysis using the GoldenGate assay to locate the Rpp 3 locus that confers resistance to soybean rust in soybean. Crop Sci 49:265–271

    Article  CAS  Google Scholar 

  • Ilarslan H, Horner HT, Palmer RG (1999) Genetics and cytology of a new male-sterile, female-fertile soybean [Glycine max (L.) Merr.] mutant. Crop Sci 39:58–64

    Article  Google Scholar 

  • Ishimoto M, Rahman SM, Hanafy MS, Khalafalla MM, El-Shemy HA, Nakamoto Y, Kita Y, Takanashi K, Matsuda F, Murano Y, Funabashi T, Miyagawa H, Wakasa K (2010) Evaluation of amino acid content and nutritional quality of transgenic soybean seeds with high-level tryptophan accumulation. Mol Breed 25:313–326

    Article  CAS  Google Scholar 

  • Ivers DR, Palmer RG, Fehr WR (1974) Anther culture in soybeans. Crop Sci 14:891–893

    Article  Google Scholar 

  • James C (2007) Global status of commercialized biotech/GM crops: 2007. ISAAA brief no. 37. ISAAA, Ithaca, New York

    Google Scholar 

  • Jian YY, Liu DP, Luo XM, Zhao GL (1986) Studies on induction of pollen plants in Glycine max (L.) Merr. J Agric Sci 2:26–30

    Google Scholar 

  • Kaiser J (2008) Is the drought over for pharming? Science 320:473–475

    Article  PubMed  CAS  Google Scholar 

  • Kaltchuk-Santos E, Mariath JE, Mundstock E, Hu C, Bodanese-Zenettini MH (1997) Cytological analysis of early microspore divisions and embryo formation in cultured soybean anthers. Plant Cell Tissue Organ Cult 49:107–115

    Article  Google Scholar 

  • Kassem MA, Meksem K, Kang CH, Njiti VN, Kilo V, Wood AJ, Lightfoot DA (2004) Loci underlying resistance to manganese toxicity mapped in a soybean recombinant inbred line population of “Essex” × “Forest”. Plant Soil 260:197–204

    Article  CAS  Google Scholar 

  • Kazi S, Shultz J, Afzal J, Johnson J, Njiti VN, Lightfoot DA (2008) Separate loci underlie resistance to root infection and leaf scorch during soybean sudden death syndrome. Theor Appl Genet 116:967–977

    Article  PubMed  CAS  Google Scholar 

  • Kenworthy WJ, Brim CA (1979) Recurrent selection in soybeans I. Seed yield. Crop Sci 19:315–318

    Article  Google Scholar 

  • Kinney AJ (1996) Development of genetically engineered soybean oils for food applications. J Food Lipids 3:273–292

    Google Scholar 

  • Kinney AJ (1997) Genetic engineering of oilseeds for desired traits. In: Setlow JK (ed) Genetic engineering, vol 19. Plenum Press, New York, pp 149–166

    Google Scholar 

  • Kollipara KP, Singh RJ, Hymowitz T (1997) Phylogenetic and genomic relationship in the genus Glycine Willd. Based on sequences from the ITS region of nuclear rDNA. Genome 40:57–68

    Article  PubMed  CAS  Google Scholar 

  • Kumar PS, Hymowitz T (1989) Where are the diploid (2n  =  2x  =  20) genome donors of Glycine Willd. (Leguminosae, Papilionoideae)? Euphytica 40:221–226

    Google Scholar 

  • Lackey JA (1980) Chromosome numbers in the Phaseoleae (Fabaceae, Faboideae) and their relationship to taxonomy. Am J Bot 67:595–602

    Article  Google Scholar 

  • Lee JD, Shannon JG, So YS, Sleper DA, Nelson RL, Lee JH, Choung MG (2009) Environment effects on lutein content and relationship of lutein and other compounds in soybean. Plant Breed 128:97–100

    Article  CAS  Google Scholar 

  • Lewers KS, Palmer RG (1997) Recurrent selection in soybean. Plant Breed Rev 16:275–313

    Google Scholar 

  • Lewers KS, St. Martin SK, Hedges DR, Widflechmer MP, Palmer RG (1996) Hybrid seed production: comparison of three methods. Crop Sci 36:1560–1567

    Article  Google Scholar 

  • Li XJ, Zhao XT, Zhi MX (2000) Changes in endogenous plant hormones in the apical buds of soybean cultivar Zao 12 during inflorescence initiation and formation. Chinese J Oil Crop Sci 22:48–50

    Google Scholar 

  • Li L, Yang Q, Hu Y, Zhu L, Ge H (1995) Discovery of parent interaction sterile material of soybean cultivars and its genetic inference. J Anhui Agric Sci 23:304–306

    Google Scholar 

  • Liu DP, Zhao GL (1986) Callus formation from pollen and culture in vitro of soybean. Soybean Sci 5:17–20

    Google Scholar 

  • Luedders VD (1977) Genetic improvement in yield of soybeans. Crop Sci 17:971–972

    Google Scholar 

  • Ma JKC, Chikwamba R, Sparrow P, Fischer R, Mahoney R, Twyman RM (2005) Plant-derived pharmaceuticals – the way forward. Trends Plant Sci 10:580–585

    Article  PubMed  CAS  Google Scholar 

  • Manjarrez-Sandoval P, Carter TE Jr, Webb DM, Burton JW (1997) Heterosis in soybean and its prediction by genetic similarity measures. Crop Sci 37:1443–1452

    Article  Google Scholar 

  • McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:923–926

    Article  Google Scholar 

  • McKendry AL, McVetty PBE, Voldeng HD (1985) Inheritance of seed protein and seed oil content in early maturing soybean. Can J Genet Cytol 37:603–607

    Google Scholar 

  • Moravec T, Schmidt MA, Eliot M, Herman EM, Woodford-Thomas T (2007) Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine. Vaccine 25:1647–1657

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nelson RL, Bermard RL (1984) Production and performance of hybrid soybean. Crop Sci 23:549–553

    Google Scholar 

  • Ortiz-Perez E, Cianzio SR, Wiley H, Horner HT, Davis WH, Palmer RG (2007) Insect-mediated cross-pollination in soybean [Glycine max (L.) Merr.]: I. Agronomic performance. Field Crops Res 101:259–268

    Article  Google Scholar 

  • Padgette SR, Kolacz KH, Delannay X, Re DB, LaVallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholtz DA, Peschke VM, Nida DL, Taylor NB, Kishore GM (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35:1451–1461

    Article  Google Scholar 

  • Palmer RG (2000) Genetics of four male-sterile, female-fertile soybean mutants. Crop Sci 40:78–83

    Article  Google Scholar 

  • Palmer RG, Kilen TC (1987) Qualitative genetics and cytogenetics. In: Wilcox JR (ed) Soybeans: improvement, production and uses, 2nd edn. Agronomy 16:135–209

    Google Scholar 

  • Palmer RG, Lewers KS (1998) Registration of 68 soybean germplasm lines segregating for male sterility. Crop Sci 38:560–562

    Article  Google Scholar 

  • Palmer RG, Skorupska H (1990) Registration of a male-sterile genetic stock (T295H) of soybean. Crop Sci 30:241

    Google Scholar 

  • Palmer RG, Winger CL, Albertsen MC (1978) Four independent mutations at the ms1 locus in soybeans. Crop Sci 18:727–729

    Article  Google Scholar 

  • Palmer RG, Winger CL, Muir PS (1980) Genetics and cytology of the ms3 male-sterile soybean. J Hered 71:343–348

    Google Scholar 

  • Palmer RG, Gai J, Sun H, Burton JW (2001) Production and evaluation of hybrid soybean. Plant Breed Rev 21:263–307

    CAS  Google Scholar 

  • Palmer RG, Pfeiffer TW, Buss GR, Kilen TC (2004) Qualitative Genetics. In: Specht, J.E. and Boerma, H.R. (eds) Soybean, improvement, production, and uses, 3rd edn. Monograph 16. American Society of Agronomy, Madision, Wisconsin, pp 137–233

    CAS  Google Scholar 

  • Parrott WA, Williams EG, Hildebrand DF, Collins GB (1989) Effect of genotype on somatic embyrogenesis from immature cotyledons of soybean. Plant Cell Tiss Org Cult 16:15–21

    Article  Google Scholar 

  • Pathan MS, Sleper DA (2008) Advances in soybean breeding. In: Stacey G (ed) Genetics and genomic of soybean. Springer, New York, p 113133

    Google Scholar 

  • Patil A, Taware SP, Raut VM (2004) Quality of Indian soybean (Glycine max (L.) Merrill) varieties in relation to fatty acids composition. Indian J Genet Plant Breed 64:245–246

    Google Scholar 

  • Patzoldt ME, Grau R, Stephens PA, Kurtzweil NC, Carlson SR, Diers BW (2005) Localization of a quantitative trait locus providing brown stem rot resistance in the soybean cultivar Bell. Crop Sci 45:1241–1248

    Article  CAS  Google Scholar 

  • Perez PT, Cianzio SR, Palmer RG (2009) Evaluation of soybean [Glycine max (l.) Merr.] F1 hybrids. J Crop Improv 23:1–18

    Article  Google Scholar 

  • Perez GT, Ribotta PD, Steffolani ME, Leon AE (2008) Effect of soybean proteins on gluten depolymerization during mixing and resting. J Sci Food Agric 88:455–463

    Article  Google Scholar 

  • Perez AA, Drago SR, Carrara CR, Greef DM, Torres RL, Gonzalez RJ (2008) Extrusion cooking of a maize/soybean mixture: factors affecting expanded product characteristics and flour dispersion viscosity. J Food Engineering 87:333–340

    Article  Google Scholar 

  • Pratap A, Sethi GS, Chaudhary HK (2005) Relative efficiency of different Gramineae genera for haploid induction in triticale and triticale x wheat hybrids through the chromosome elimination technique. Plant Breed 124:147–153

    Article  Google Scholar 

  • Pratap A, Sethi GS, Chaudhary HK (2006) Relative efficiency of anther culture and wheat × maize techniques for haploid induction in triticale × wheat and triticale × triticale hybrids. Euphytica 150:339–345

    Article  CAS  Google Scholar 

  • Probst AH, Judd RW (1973) Origin, US history and development, and world distribution. In: Caldwell BE (ed) Soybean: improvement, production, and uses. Agron monograph 16. Is ted. ASA, CSSA, and SSSA, Madison, pp 1–15

    Google Scholar 

  • Qi ZY, Wang W, Cao MJ (2008) The morphological and physiological diversities in roots of different potassium efficient soybean lines. J Shenyang Agric Univ 39:137–140

    Google Scholar 

  • Rahangdale SR, Raut VM (2002) Gene effects for oil content and other quantitative traits in soybean (Glycine max (L.) Merill). Indian J Genet Plant Breed 62:322–327

    Google Scholar 

  • Rao SS, Hildebrand D (2009) Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene. Lipids 44:945–951

    Article  PubMed  CAS  Google Scholar 

  • Raut VM, Taware SP, Halvankar GB (2000) Gene effects for some quantitative characters in soybean (Glycine max) crosses. Indian J Agric Sci 70:334–335

    Google Scholar 

  • Raut RG, Rekhate DH, Dhok AP (2002) In vitro evaluation of arhar, (Cajanus cajan), straw based pelleted complete feed and dry matter intake in goats. Indian J Small Ruminants 8:23–26

    Google Scholar 

  • Rech EL, Vianna GR, Aragão FJL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc 3:410–418

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues LR, Oliveira JMS, Mariath JEA, Iranco LB, Bodanese-Zanettini MH (2005) Anther culture and cold treatment of floral buds increased symmetrical and extra-nuclei frequencies in soybean pollen grains. Plant Cell Tiss Org Cult 81:101–104

    Article  Google Scholar 

  • Rose JL, Butler DG, Ryley MJ (1992) Yield improvement in soybeans using recurrent selection. Aust J Agric Res 4:135–144

    Article  Google Scholar 

  • Safari A, Schlueter JA (2011) Polyploidy. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI, Oxfordshire

    Google Scholar 

  • Saghai Maroof MA, Jeong SC, Gunduz I, Tucker DM, Buss GR, Tolin SA (2008) Pyramiding of soybean mosaic virus resistance genes by marker assisted selection. Crop Sci 48:517–526

    Article  CAS  Google Scholar 

  • Santarem ER, Finer JJ (1999) Transformation of soybean (Glycine max (L.) Merrill) using proliferative embryogenic tissue maintained on semi-solid medium. In Vitro Cell Dev Biol 35:451–455

    Article  Google Scholar 

  • Sato S, Xing A, Ye X, Schweiger B, Kinney A, Graef G, Clemente T (2004) Production of γ-linolenic acid and stearidonic acid in seeds of marker-free transgenic soybean. Crop Sci 44:646–652

    Article  CAS  Google Scholar 

  • Sauer MLA, Scott RA, Cheesbrough TM (2008) Marker assisted selection for low linolenic acid content in soybean. J Crop Improv 21:139–155

    Article  CAS  Google Scholar 

  • Schlueter JA, Dixon P, Granger C, Grant D, Clark L, Doyle JJ, Shoemaker RC (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome 47:868–876

    Article  PubMed  CAS  Google Scholar 

  • Schmidt MA, Tucker DM, Cahoon EB, Parrott WA (2005) Towards normalization of soybean somatic embryo maturation. Plant Cell Rep 24:383–391

    Article  PubMed  CAS  Google Scholar 

  • Schoen JD, Brown HD (1991) Whole and part flower self pollination in Glycine clandestina and G argyrea and the evolution of autogamy. Evolution 45:1651–1664

    Article  PubMed  CAS  Google Scholar 

  • Schwarzacher T, Heslop-Harrison JS (2000) Practical in-situ hybridization. Bios Scientific Publishers, Oxford, p 203

    Google Scholar 

  • Sen NK, Vidyabhusan RV (1960) Tetraploid soybeans. Euphytica 9:317–322

    Article  CAS  Google Scholar 

  • Shi A, Chen P, Li DX, Zheng C, Hou A, Zhang B (2008) Genetic confirmation of 2 independent genes for resistance to soybean mosaic virus in J05 soybean using SSR markers. J Hered 99:598–603

    Article  PubMed  CAS  Google Scholar 

  • Shi A, Chen P, Li D, Zheng C, Zhang B, Hou A (2009) Pyramiding multiple genes for resistance to soybean mosaic virus in soybean using molecular markers. Mol Breed 23:113–124

    Article  CAS  Google Scholar 

  • Shoemaker R, Polzin K, Labate J, Specht J, Brummer EC, Olson T, Young N, Concibido V, Wilcox J, Tamulonis J, Kochert G, Boerma HR (1996) Genome duplication in soybean (Glycine subgenus soja). Genetics 144:329–338

    PubMed  CAS  Google Scholar 

  • Shoemaker RC, Schlueter J, Doyle JJ (2006) Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol 9:104–109

    Article  PubMed  CAS  Google Scholar 

  • Shultz JL et al (2006) The soybean genome database (SoyGD): a browser for display a duplicated, polyploidy, regions and sequence tagged sites on integrated physical and genetic maps of Glycine max. Nucleic Acid Res 34:D758–D765

    Article  PubMed  CAS  Google Scholar 

  • Singh BB, Hadley HH (1968) Maternal control of oil synthesis in soybeans, (Glycine max (L.) Merr.). Crop Sci 8:622–625

    Article  Google Scholar 

  • Singh RJ, Hymowitz T (1985) The genomic relationships among six wild perennial species of the genus Glycine subgenus Glycine Willd. Theor Appl Genet 71:221–230

    Google Scholar 

  • Singh RJ, Hymowitz T (1988) The genomic relationship between Glycine max (L.) Merr. and G. soja Sieb. and Zucc. as revealed by pachytene chromosome analysis. Theor Appl Genet 76:705–711

    Article  Google Scholar 

  • Singh RJ, Hymowitz T (1999) Soybean genetic resources and crop improvement. Genome 42:605–616

    Article  CAS  Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1990) Backcross-derived progeny from soybean and Glycine tomentella Hayata intersubgeneric hybrids. Crop Sci 30(4):871–874

    Article  PubMed  CAS  Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1993a) Backcross (BC2-BC4) – Derived Fertile Plants From Glycinemax (L.)Merr. and Glycine tomentella Intersubgeneric Hybrids. Crop Sci 30:871–874

    Article  PubMed  CAS  Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1993b) Genomic Diversity in Tetraploid (2n=78, 80) Glycine tomentella Hayata. Agronomy Abstracts. p 102

    Article  PubMed  CAS  Google Scholar 

  • Skorupska H, Palmer RG (1989) Genetics and cytology of the ms6 male-sterile soybean. J Hered 80:304–310

    Google Scholar 

  • Skorupska HT, Palmer RG (1990) Additional sterile mutations in soybean Glycine max (L.) Merr. J Hered 81:296–300

    Google Scholar 

  • Skorupska H, Albertsen MC, Langholz KD, Palmer RG (1989) Detection of ribosomal RNA genes in soybean, Glycine max (L) Merr., by in situ hybridization. Genome 32:1091–1095

    Article  Google Scholar 

  • Skrzypek E, Czyczyło-Mysza I, Wędzony M (2011) Micropropagation. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI, Oxfordshire

    Google Scholar 

  • Sleper DA, Shannon JG (2003) Role of public and private soybean breeding programs in the development of soybean varieties using biotechnology. Agbioforum 6:27–32

    Google Scholar 

  • Smith J (2010) USDA, ARS, National Genetic Resources Program. Germplasm Resources Information Network – (GRIN). National Germplasm Resources Laboratory, Beltsville. http://www.ars-grin.gov/cgi-bin/npgs/acc/search.pl?accid=PI+659348 Accessed on October, 2010

  • Smith JR, Nelson RL (1986) Relationship between seed filling period and yield among soybean breeding lines. Crop Sci 26:469–472

    Article  Google Scholar 

  • Sompong U, Kaewprasit C, Nakasathien S, Srinives P (2010) Inheritance of seed phytate in mungbean (Vigna radiata). Euphytica 171:389–396

    Article  CAS  Google Scholar 

  • Steeves RM, Todd TC, Essig JS, Trick HN (2006) Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct Plant Biol 33:991–999

    Article  CAS  Google Scholar 

  • Stelly DM, Palmer RG (1980) A partially male-sterile mutant line of soybeans, Glycine max (L.) Merr.: inheritance. Euphytica 29:295–303

    Article  Google Scholar 

  • Stelly DM, Palmer RG (1985) Relative development of basal, medial, and apical ovules in soybean. Crop Sci 25:877–879

    Article  Google Scholar 

  • Straub SCK, Pfeil BE, Doyle JJ (2006) Testing the polyploid past of soybean using a low-copy nuclear gene – is Glycine (Fabaceae: Papilionoideae) an auto- or allopolyploid? Mol Phylogenet Evol 39:580–584

    Article  Google Scholar 

  • Sun H, Zhao L, Huang M (1994) Studies on cytoplasmic-nuclear male sterile soybean. Chin Sci Bull 39:175–176

    Google Scholar 

  • Sun H, Zhao L, Huang M (1997) Cytoplasmic-nuclear male-sterile soybean line from interspecific crosses between G. max and G. soja. World soybean research conference V. Kasetsart University Press, Bangkok, Thailand, pp 99–102

    Google Scholar 

  • Sun H, Zhao L, Li J, Wang S (1999) The investigation of heterosis and pollen transfer in soybean. In: Kauffman HE (ed) World soybean research conference VI. Superior Printing, Champaign, p 489

    Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Sci Washington 277:1063–1066

    Article  CAS  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Nat Biotechnol 7:257–264

    Article  CAS  Google Scholar 

  • Tinius CN, Burton JW, Carter TE Jr (1991) Recurrent selection for seed size in soybean, I. Response to selection in replicate populations. Crop Sci 31:1137–1141

    Article  Google Scholar 

  • Tiwari S, Shanker P, Tripathi M (2004) Effects of genotype and culture medium on in vitro androgenesis in soybean (Glycine max Merr.). Indian J Biotechnol 3:441–444

    CAS  Google Scholar 

  • Tomlin ES, Branch SR, Chamberlain D, Gabe H, Wright MS, Stewart CN Jr (2002) Screening of soybean, Glycine max (L.) Merrill, lines for somatic embryo induction and maturation capability from immature cotyledons. In Vitro Cell Dev Biol 38:543–548

    Article  Google Scholar 

  • Tougou M, Furutani N, Yamagishi N, Shizukawa Y, Takahata Y, Hidaka S (2006) Development of resistant transgenic soybeans with inverted repeat-coat protein genes of soybean dwarf virus. Plant Cell Rep 25:1213–1218

    Article  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789

    Article  PubMed  CAS  Google Scholar 

  • Trick HN, Finer JJ (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep 17:482–488

    Article  CAS  Google Scholar 

  • Tuyen DD, Lal SK, Xu DH (2010) Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor Appl Genet. doi:10.1007/s00122-010-1304-y

  • Udall JA, Wendel JF (2006) Polyploidy and crop improvement. Crop Sci 46(S1):S3–S14

    Google Scholar 

  • Van K, Jang H, Young-Eun J, Lee Suk-Ha J (2008) Regeneration of plants from EMS-treated immature embryo cultures in soybean [Glycine max (L.) Merr.]. Crop Sci Biotechnol 11:119–126

    Google Scholar 

  • Vuong TD, Sleper DA, Shannon JG, Nguyen HT (2010) Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines Ichinohe) in soybean PI 567516C. Theor Appl Genet. doi:10.1007/s00122-010-1385-7

  • Walker DR, Parrott WA (2001) Effect of polyethylene glycol and sugar alcohols on soybean somatic embryo germination and conversion. Plant Cell Tiss Org Cult 64:55–62

    Article  CAS  Google Scholar 

  • Walker DR, Boerma HR, All JN, Parrott WA (2002) Combining cry1Ac with QTL alleles from PI 229358 to improve soybean resistance to Lepidopteran pests. Mol Breed 9:43–51

    Article  CAS  Google Scholar 

  • Wang S, Sun H, Zhao L, Wang Y, Peng B, Fan X, Zhang B (2009) Progress and problem analysis on soybean male sterility and heterosis exploitation in China. Soybean Sci 28:1089–1096

    Google Scholar 

  • Wang H, Waller L, Tripathy S, St. Martin SK, Zhou L, Krampis K, Tucker DM, Mao Y, Hoeschele I, Saghai Maroof MA, Tyler BM, Dorrance AE (2010) Analysis of genes underlying soybean quantitative trait loci conferring partial resistance to Phytophthora sojae. Plant Genome 3:23–40

    Article  CAS  Google Scholar 

  • Warrington CV, Zhu S, Parrot WA, All JN, Boerma HR (2008) Seed yield of near-isogenic soybean lines with introgressed quantitative trait loci conditioning resistance to corn earworm (Lepidoptera: Noctuidae) and soybean looper (Lepidoptera: Noctuidae) from PI 229358. J Econ Entomol 101:1471–1477

    Article  PubMed  CAS  Google Scholar 

  • Wells R, Burton JW, Kilen TC (1993) Soybean growth and light interception: response to differing leaf and stem morphology. Crop Sci 33:520–524

    Article  Google Scholar 

  • Wilcox JR, Cavins JF (1990) Registration of C1726 and C1727 Soybean germplasm with altered levels of palmitic acid. Crop Sci 30:240

    Article  Google Scholar 

  • Wu X, Blake S, Sleper DA, Shannon JG, Cregan PB, Nguyen HT (2009) QTL, additive, and epistatic effects for SCN resistance in PI 437654. Theor Appl Genet 118:1093–1105

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Li L, Qiu L, Chang R, Wang M, Li Z, Guo P (1999) Selection of three lines and localization of the restorer genes in soybean using SSR markers. Sci Agric Sinica 32:32–38

    CAS  Google Scholar 

  • Yang G, Lee YH, Jiang Y, Kumpatla SP, Hall TC (2005) Organization, not duplication, triggers silencing in a complex transgene locus in rice. Plant Mol Biol 58:351–366

    Article  PubMed  CAS  Google Scholar 

  • Ye XG, Fu YQ, Wang LZ (1994) Study on several problems of soybean anther culture. Soybean Sci 13:193–199

    Google Scholar 

  • Yeung EC, Sussex IM (1979) Embryogeny of Phaseolus coccineus: the suspensor and the growth of the embryo-proper in vitro. Z Pflanzenphysiol 91:423–433

    CAS  Google Scholar 

  • Yin GC, Zhu ZY, Xu Z, Chen L, Li XZ, Bi FY (1982) Studies on induction of pollen plant and their androgenesis in Glycine max (L.). Soybean Sci 1:69–76

    Google Scholar 

  • Zernova OV, Lygin AV, Widholm JM, Lozovaya VV (2009) Modification of isoflavones in soybean seeds via expression of multiple phenolic biosynthetic genes. Plant Physiol Biochem 47:769–777

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Dai O (1997) Selection of cytoplasm-nuclear male-sterile soybean line W931A. Sci Agric Sinica 30:90–91

    Google Scholar 

  • Zhang L, Dai O, Zhang L (1999a) Breeding of soybean male-sterile line of nucleo-cytoplasmic interaction. Soybean Sci 18:327–330

    CAS  Google Scholar 

  • Zhang L, Dai O, Huang Z, Li J (1999b) Selection of soybean male-sterile line of nucleo-cytoplasmic interaction and its fertility. Sci Agric Sinica 32:34–38

    CAS  Google Scholar 

  • Zhao TJ, Gai JY (2006) Discovery of new male-sterile cytoplasm sources and development of a new cytoplasmic nuclear male-sterile line NJCMS 3A in soybean. Euphytica 152:387–396

    Article  CAS  Google Scholar 

  • Zhuang H, Hildebrand DF, Chen Y, Yin GC (1991) Embroids from soybean anther culture. In vitro Cellular development Biol 27: Part II, (Abstr # 432)145 A

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Pratap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pratap, A., Gupta, S.K., Kumar, J., Solanki, R.K. (2012). Soybean. In: Gupta, S. (eds) Technological Innovations in Major World Oil Crops, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0356-2_12

Download citation

Publish with us

Policies and ethics