Skip to main content

Spliceosomal RNA infrastructure: The Network of Splicing Components and Their Regulation by miRNAs

  • Chapter
RNA Infrastructure and Networks

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 722))

Abstract

The RNA infrastructure model highlights the major roles played by RNA— based networks in cellular biology. One of the principle concepts behind the RNA-infrastructure is that proteins shared between RNP machineries network their processes in a temporal (over the cell cycle) and spatial (across the cell, or intercellular) manner. In order to dig deeper into the RNA-infrastructure we need to examine the networking aspects of RNPs in a more detailed manner. The eukaryotic spliceosome is an excellent example of an RNA machine that contains RNA-Protein and RNA-RNA interactions, as well as temporal and spatial networking to other processes. This chapter will examine some different types of spliceosomal networks that involve RNPs and illustrate how current networking tools can be used to dissect the many faces of the RNA-infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collins LJ, Penny D. RNA-infrastructure: Dark Matter of the Eukaryotic Cell? Trends in Genetics 2009; 25(3):120–128.

    Article  PubMed  CAS  Google Scholar 

  2. Licatalosi DD, Darnell RB. RNA processing and its regulation: global insights into biological networks. Nat Rev Genet 2010; 11(1):75–87.

    Article  PubMed  CAS  Google Scholar 

  3. Amaral PP, Dinger ME, Mercer TR et al. The eukaryotic genome as an RNA machine. Science 2008; 319(5871):1787–1789.

    Article  PubMed  CAS  Google Scholar 

  4. Collins LJ, Chen XS, Schonfeld B. The Epigenetics of Non-coding RNA. In: Tollefsbol T, ed. Handbook of Epigenetics. Oxford: Academic Press; 2010:49–61.

    Google Scholar 

  5. Collins LJ, Chen XS. Ancestral RNA: The RNA biology of the eukaryotic ancestor. RNA Biology 2009; 6(5): 1–8.

    Article  Google Scholar 

  6. Costa FF. Non-coding RNAs: Lost in translation? Gene 2007; 386(1–2):1–10.

    PubMed  CAS  Google Scholar 

  7. Costanzo M, Baryshnikova A, Bellay J et al. The genetic landscape of a cell. Science 2010; 327(5964):425–431.

    Article  PubMed  CAS  Google Scholar 

  8. Janga SC, Tzakos A. Structure and organization of drug-target networks: insights from genomic approaches for drug discovery. Mol Biosyst 2009.

    Google Scholar 

  9. MacLean D, Elina N, Havecker ER et al. Evidence for large complex networks of plant short silencing RNAs. PLoS One 5(3):e9901.

    Google Scholar 

  10. Li L, Zhang K, Lee J et al. Discovering cancer genes by integrating network and functional properties. BMC Med Genomics 2009; 2:61.

    Article  PubMed  Google Scholar 

  11. Nibbe RK, Koyuturk M, Chance MR. An integrative-omics approach to identify functional sub-networks in human colorectal cancer. PLoS Comput Biol 2010; 6(1):e1000639.

    Article  PubMed  Google Scholar 

  12. Yizhak K, Benyamini T, Liebermeister W et al. Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Bioinformatics 2010; 26(12):i255–260.

    Article  PubMed  CAS  Google Scholar 

  13. Tsai ZY, Singh S, Yu SL et al. Identification of microRNAs regulated by activin A in human embryonic stem cells. J Cell Biochem 2010; 109(1):93–102.

    PubMed  CAS  Google Scholar 

  14. Jamalkandi SA, Masoudi-Nejad A. Reconstruction of Arabidopsis thaliana fully integrated small RNA pathway. Funct Integr Genomics 2009; 9(4):419–432.

    Article  PubMed  CAS  Google Scholar 

  15. Dobbyn HC, McEwan PA, Krause A et al. Analysis of pre-mRNA and prerRNA processing factor Snu13p structure and mutants. Biochem Biophys Res Commun 2007; 360(4):857–862.

    Article  PubMed  CAS  Google Scholar 

  16. Breitkreutz BJ, Stark C, Reguly T et al. The BioGRID Interaction Database: 2008 update. Nucleic Acids Res 2008; 36(Database issue):D637–D640.

    Article  PubMed  CAS  Google Scholar 

  17. Collins L, Penny D. Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol 2005; 22(4): 1053–1066.

    Article  PubMed  CAS  Google Scholar 

  18. Jurica MS, Moore MJ. Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 2003; 12(1):5–14.

    Article  PubMed  CAS  Google Scholar 

  19. Valadkhan S. The spliceosome: a ribozyme at heart? Biol Chem 2007; 388(7):693–697.

    Article  PubMed  CAS  Google Scholar 

  20. Valadkhan S. Role of the snRNAs in spliceosomal active site. RNA Biol 2010;7(3):345–353.

    Article  PubMed  CAS  Google Scholar 

  21. Lorkovic ZJ, Lehner R, Forstner C et al. Evolutionary conservation of minor U12-type spliceosome between plants and humans. RNA 2005; 11(7):1095–1107.

    Article  PubMed  CAS  Google Scholar 

  22. Behzadnia N, Golas MM, Hartmuth K et al. Composition and three-dimensional EM structure of double affinity-purified, human prespliceosomal A complexes. EMBO J 2007; 26(6):1737–1748.

    Article  PubMed  CAS  Google Scholar 

  23. Deckert J, Hartmuth K, Boehringer D et al. Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions. Mol Cell Biol 2006; 26(14):5528–5543.

    Article  PubMed  CAS  Google Scholar 

  24. Ilagan J, Yuh P, Chalkley RJ et al. The role of exon sequences in C complex spliceosome structure. J Mol Biol 2009; 394(2):363–375.

    Article  PubMed  CAS  Google Scholar 

  25. Yamada T, Bork P. Evolution of biomolecular networks: lessons from metabolic and protein interactions. Nat Rev Mol Cell Biol 2009; 10(11):791–803.

    Article  PubMed  CAS  Google Scholar 

  26. Dyer MD, Neff C, Dufford M et al. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis and Yersinia pestis. PLoS One 5(8):e12089.

    Google Scholar 

  27. Rito T, Wang Z, Deane CM et al. How threshold behaviour affects the use of subgraphs for network comparison. Bioinformatics 26(18):i611–i617.

    Google Scholar 

  28. MacLean D, Elina N, Havecker ER et al. Evidence for large complex networks of plant short silencing RNAs. PLoS One 2010; 5(3):e9901.

    Article  PubMed  Google Scholar 

  29. Assenov Y, Ramirez F, Schelhorn SE et al. Computing topological parameters of biological networks. Bioinformatics 2008; 24(2):282–284.

    Article  PubMed  CAS  Google Scholar 

  30. Killcoyne S, Carter GW, Smith J et al. Cytoscape: a community-based framework for network modeling. Methods Mol Biol 2009; 563:219–239.

    Article  PubMed  CAS  Google Scholar 

  31. Shannon P, Markiel A, Ozier O et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11):2498–2504.

    Article  PubMed  CAS  Google Scholar 

  32. Cline MS, Smoot M, Cerami E et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2007; 2(10):2366–2382.

    Article  PubMed  CAS  Google Scholar 

  33. Moretti F, Thermann R, Hentze MW. Mechanism of translational regulation by miR-2 from sites in the 5′ untranslated region or the open reading frame. RNA 2010; 16(12):2493–2502.

    Article  PubMed  CAS  Google Scholar 

  34. Nacher JC, Araki N. Structural characterization and modeling of ncRNA-protein interactions. Biosystems 2010; 101(1):10–19.

    Article  PubMed  CAS  Google Scholar 

  35. Naeem H, Kuffner R, Csaba G et al. miRSel: automated extraction of associations between microRNAs and genes from the biomedical literature. BMC Bioinformatics 2010; 11:135.

    Article  PubMed  Google Scholar 

  36. Griffiths-Jones S. miRBase: microRNA sequences and annotation. Curr Protoc Bioinformatics 2010; Chapter 12:Unit 12 19 11–10.

    Google Scholar 

  37. Gardner PP, Daub J, Tate JG et al. Rfam: updates to the RNA families database. Nucleic Acids Res 2009; 37(Database issue):D136–D140.

    Article  PubMed  CAS  Google Scholar 

  38. Daub J, Gardner PP, Tate J et al. The RNA WikiProject: community annotation of RNA families. RNA 2008; 14(12):2462–2464.

    Article  PubMed  CAS  Google Scholar 

  39. Xiao F, Zuo Z, Cai G et al. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 2009; 37(Database issue):D105–D110.

    Article  PubMed  CAS  Google Scholar 

  40. Rito T, Wang Z, Deane CM et al. How threshold behaviour affects the use of subgraphs for network comparison. Bioinformatics 2010; 26(18):i611–i617.

    Article  PubMed  CAS  Google Scholar 

  41. Przulj N, Corneil DG, Jurisica I. Efficient estimation of graphlet frequency distributions in protein-protein interaction networks. Bioinformatics 2006; 22(8):974–980.

    Article  PubMed  CAS  Google Scholar 

  42. Liu B, Li J, Tsykin A et al. Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy. BMC Bioinformatics 2009; 10:408.

    Article  PubMed  Google Scholar 

  43. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science 2007; 318(5858):1931–1934.

    Article  PubMed  CAS  Google Scholar 

  44. Redner S. Networks: teasing out the missing links. Nature 2008; 453(7191):47–48.

    Article  PubMed  CAS  Google Scholar 

  45. Golas MM, Sander B, Will CL et al. Luhrmann R, Stark H. Molecular architecture of the multiprotein splicing factor SF3b. Science 2003; 300(5621):980–984.

    Article  PubMed  CAS  Google Scholar 

  46. Das BK, Xia L, Palandjian L et al. Characterization of a protein complex containing spliceosomal proteins SAPs 49, 130, 145 and 155. Mol Cell Biol 1999; 19(10):6796–6802.

    PubMed  CAS  Google Scholar 

  47. Lardelli RM, Thompson JX, Yates JR 3rd et al. Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing. RNA 16(3):516–528.

    Google Scholar 

  48. Wu H, Sun S, Tu K et al. A splicing-independent function of SF2/ASF in microRNA processing. Mol Cell 2010; 38(1):67–77.

    Article  PubMed  CAS  Google Scholar 

  49. Kefas B, Godlewski J, Comeau L et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 2008; 68(10):3566–3572.

    Article  PubMed  CAS  Google Scholar 

  50. Janda CY, Li J, Oubridge C et al. Recognition of a signal peptide by the signal recognition particle. Nature 465(7297):507–510.

    Google Scholar 

  51. Collins L, Penny D. Investigating the intron recognition mechanism in eukaryotes. Mol Biol Evol 2006; 23(5):901–910.

    Article  PubMed  CAS  Google Scholar 

  52. Ohe K, Mayeda A. HMGA1a trapping of U1 snRNP at an authentic 5′ splice site induces aberrant exon skipping in sporadic Alzheimer’s disease. Mol Cell Biol 30(9):2220–2228.

    Google Scholar 

  53. Sun N, Zhao H. Reconstructing transcriptional regulatory networks through genomics data. Stat Methods Med Res 2009; 18(6):595–617.

    Article  PubMed  Google Scholar 

  54. Pedrotti S, Bielli P, Paronetto MP et al. The splicing regulator Sam68 binds to anovel exonic splicing silencer and functions in SMN2 alternative splicing in spinal muscular atrophy. EMBO J 2010; 29(7): 1235–1247.

    Article  PubMed  CAS  Google Scholar 

  55. Lee JH, Horak CE, Khanna C et al. Alterations in Gemin5 expression contribute to alternative mRNA splicing patterns and tumor cell motility. Cancer Res 2008; 68(3):639–644.

    Article  PubMed  CAS  Google Scholar 

  56. van Alphen RJ, Wiemer EA, Burger H et al. The spliceosome as target for anticancer treatment. Br J Cancer 2009; 100(2):228–232.

    Article  PubMed  Google Scholar 

  57. Zdobnov EM, von Mering C, Letunic I et al. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 2002; 298(5591):149–159.

    Article  PubMed  CAS  Google Scholar 

  58. Bullard JH, Purdom E, Hansen KD et al. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 2010; 11:94.

    Article  PubMed  Google Scholar 

  59. Anderson P, Kedersha N. RNA granules. J Cell Biol 2006; 172(6):803–808.

    Article  PubMed  CAS  Google Scholar 

  60. Dybkov O, Will CL, Deckert J et al. U2 snRNA-protein contacts in purified human 17S U2 snRNPs and in spliceosomal A and B complexes. Mol Cell Biol 2006; 26(7):2803–2816.

    Article  PubMed  CAS  Google Scholar 

  61. Behzadnia N, Hartmuth K, Will CL et al. Functional spliceosomal A complexes can be assembled in vitro in the absence of a penta-snRNP. RNA 2006; 12(9):1738–1746.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Collins, L.J. (2011). Spliceosomal RNA infrastructure: The Network of Splicing Components and Their Regulation by miRNAs. In: Collins, L.J. (eds) RNA Infrastructure and Networks. Advances in Experimental Medicine and Biology, vol 722. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0332-6_6

Download citation

Publish with us

Policies and ethics