Skip to main content

Abstract

The anesthetic agents used to produce general anesthesia and the physiological management have an impact on the ability of intraoperative neurophysiological monitoring to be conducted. Clearly the most challenging circumstances are when monitoring techniques are sensitive to the agents used. This section will discuss the general principles behind the effects of anesthetic agents and the known effects on electrophysiological monitoring. The specific choice of anesthetic agents will depend on the effects of the agents, the monitoring techniques used, and the anesthetic goals desired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008;322:876–80.

    Article  PubMed  CAS  Google Scholar 

  2. Winters WD, Mori K, Spooner CE, Bauer RO. The neurophysiology of anesthesia. Anesthesiology. 1967;28:65–80.

    Article  PubMed  CAS  Google Scholar 

  3. Franks NP, Lieb WR. Which molecular targets are most relevant to general anaesthesia? Toxicol Lett. 1998;100–101:1–8.

    Article  PubMed  Google Scholar 

  4. Orser BA, Saper CB. Multimodal anesthesia and systems neuroscience: the new frontier [comment]. Anesthesiology. 2008;109:948–50.

    Article  PubMed  Google Scholar 

  5. John ER, Prichep LS. The anesthetic cascade: a theory of how anesthesia suppresses consciousness. Anesthesiology. 2005;102:447–71.

    Article  PubMed  Google Scholar 

  6. Bonin RP, Orser BA. GABA(A) receptor subtypes underlying general anesthesia. Pharmacol Biochem Behav. 2008;90:105–12.

    Article  PubMed  CAS  Google Scholar 

  7. Hemmings Jr HC, Akabas MH, Goldstein PA, Trudell JR, Orser BA, Harrison NL. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci. 2005;26:503–10.

    Article  PubMed  CAS  Google Scholar 

  8. Antkowiak B. How do general anaesthetics work? Naturwissenschaften. 2001;88:201–13.

    Article  PubMed  CAS  Google Scholar 

  9. Sonner JM, Antognini JF, Dutton RC, Flood P, Gray AT, Harris RA, et al. Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration [see comment] [erratum appears in Anesth Analg. 2004 Jan;98(1):29]. Anesth Analg. 2003;97:718–40.

    Article  PubMed  CAS  Google Scholar 

  10. Rampil IJ. Anesthetic potency is not altered after hypothermic spinal cord transection in rats. Anesthesiology. 1994;80:606–10.

    Article  PubMed  CAS  Google Scholar 

  11. Rampil IJ, Mason P, Singh H. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology. 1993;78:707–12.

    Article  PubMed  CAS  Google Scholar 

  12. Furst S. Transmitters involved in antinociception in the spinal cord. Brain Res Bull. 1999;48:129–41.

    Article  PubMed  CAS  Google Scholar 

  13. Van Dort CJ, Baghdoyan HA, Lydic R. Neurochemical modulators of sleep and anesthetic states. Int Anesthesiol Clin. 2008;46:75–104.

    Article  PubMed  Google Scholar 

  14. Ohara A, Mashimo T, Zhang P, Inagaki Y, Shibuta S, Yoshiya I. A comparative study of the antinociceptive action of xenon and nitrous oxide in rats. Anesth Analg. 1997;85:931–6.

    PubMed  CAS  Google Scholar 

  15. Sloan TB. Evoked potentials. In: Albin MA, editor. Textbook of neuroanesthesia with neurosurgical and neuroscience perspectives. New York: McGraw-Hill; 1997. p. 221–76.

    Google Scholar 

  16. van Dongen EP, ter Beek HT, Schepens MA, Morshuis WJ, Langemeijer HJ, Kalkman CJ, et al. The influence of nitrous oxide to supplement fentanyl/low-dose propofol anesthesia on transcranial myogenic motor-evoked potentials during thoracic aortic surgery. J Cardiothorac Vasc Anesth. 1999;13:30–4.

    Article  PubMed  Google Scholar 

  17. van Dongen EP, ter Beek HT, Schepens MA, Morshuis WJ, de Boer A, Aarts LP, et al. Effect of nitrous oxide on myogenic motor potentials evoked by a six pulse train of transcranial electrical stimuli: a possible monitor for aortic surgery. Br J Anaesth. 1999;82:323–8.

    Article  PubMed  Google Scholar 

  18. Sakamoto T, Kawaguchi M, Inoue S, Furuya H. Suppressive effect of nitrous oxide on motor evoked potentials can be reversed by train stimulation in rabbits under ketamine/fentanyl anaesthesia, but not with additional propofol. Br J Anaesth. 2001;86:395–402.

    Article  PubMed  CAS  Google Scholar 

  19. Asouhido I, Katsardis V, Vaidis G, Ioannou P, Givissis P, Christodoulou A, et al. Seoseamrchatosensory evoked potentials suppression due to remifentanil during spinal operations; a prospective clinical study. Scoliosis. 2010;5:8–13.

    Article  Google Scholar 

  20. Schubert A, Licina MG, Lineberry PJ. The effect of ketamine on human somatosensory evoked potentials and its modification by nitrous oxide [erratum appears in Anesthesiology 1990 Jun;72(6):1104]. Anesthesiology. 1990;72:33–9.

    Article  PubMed  CAS  Google Scholar 

  21. Schwender D, Klasing S, Madler C, Poppel E, Peter K. Mid-latency auditory evoked potentials during ketamine anaesthesia in humans. Br J Anaesth. 1993;71:629–32.

    Article  PubMed  CAS  Google Scholar 

  22. Kano T, Shimoji K. The effects of ketamine and neuroleptanalgesia on the evoked electrospinogram and electromyogram in man. Anesthesiology. 1974;40:241–6.

    Article  PubMed  CAS  Google Scholar 

  23. Glassman SD, Shields CB, Linden RD, Zhang YP, Nixon AR, Johnson JR. Anesthetic effects on motor evoked potentials in dogs. Spine. 1993;18:1083–9.

    Article  PubMed  CAS  Google Scholar 

  24. Taniguchi M, Nadstawek J, Langenbach U, Bremer F, Schramm J. Effects of four intravenous anesthetic agents on motor evoked potentials elicited by magnetic transcranial stimulation. Neurosurgery. 1993;33:407–15; discussion 415.

    Google Scholar 

  25. Logginidou HG, Li B-H, Li D-P, Lohmann JS, Schuler HG, DiVittore NA, et al. Propofol suppresses the cortical somatosensory evoked potential in rats. Anesth Analg. 2003;97:1784–8.

    Article  PubMed  CAS  Google Scholar 

  26. Kawaguchi M, Furuya H. Intraoperative spinal cord monitoring of motor function with myogenic motor evoked potentials: a consideration in anesthesia. J Anesth. 2004;18:18–28.

    Article  PubMed  Google Scholar 

  27. Kochs E, Treede RD, Schulte AM, Esch J. Increase in somatosensory evoked potentials during anesthesia induction with etomidate. Anaesthesist. 1986;35:359–64.

    PubMed  CAS  Google Scholar 

  28. Sloan TB, Ronai AK, Toleikis JR, Koht A. Improvement of intraoperative somatosensory evoked potentials by etomidate. Anesth Analg. 1988;67:582–5.

    PubMed  CAS  Google Scholar 

  29. McPherson RW, Sell B, Traystman RJ. Effects of thiopental, fentanyl, and etomidate on upper extremity somatosensory evoked potentials in humans. Anesthesiology. 1986;65:584–9.

    Article  PubMed  CAS  Google Scholar 

  30. Russ W, Thiel A, Schwandt HJ, Hempelmann G. Somatosensory evoked potentials under thiopental and etomidate. Anaesthesist. 1986;35:679–85.

    PubMed  CAS  Google Scholar 

  31. Koht A, Schutz W, Schmidt G, Schramm J, Watanabe E. Effects of etomidate, midazolam, and thiopental on median nerve somatosensory evoked potentials and the additive effects of fentanyl and nitrous oxide. Anesth Analg. 1988;67:435–41.

    Article  PubMed  CAS  Google Scholar 

  32. Langeron O, Lille F, Zerhouni O, Orliaguet G, Saillant G, Riou B, et al. Comparison of the effects of ketamine-midazolam with those of fentanyl-midazolam on cortical somatosensory evoked potentials during major spine surgery. Br J Anaesth. 1997;78:701–6.

    Article  PubMed  CAS  Google Scholar 

  33. Rampil IJ. Electroencephalogram. In: Albin MA, editor. Textbook of neuroanesthesia with neurosurgical and neuroscience perspectives. New York: McGraw-Hill; 1997. p. 193–220.

    Google Scholar 

  34. Sloan TB, Fugina ML, Toleikis JR. Effects of midazolam on median nerve somatosensory evoked potentials. Br J Anaesth. 1990;64:590–3.

    Article  PubMed  CAS  Google Scholar 

  35. Kalkman CJ, Drummond JC, Ribberink AA, Patel PM, Sano T, Bickford RG. Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology. 1992;76:502–9.

    Article  PubMed  CAS  Google Scholar 

  36. Scheufler K-M, Zentner J. Total intravenous anesthesia for intraoperative monitoring of the motor pathways: an integral view combining clinical and experimental data. J Neurosurg. 2002;96:571–9.

    Article  PubMed  CAS  Google Scholar 

  37. Zentner J. Motor evoked potential monitoring in operations of the brainstem and posterior fossa. In: Schramm J, Moller AR, editors. Intraop neurophysiol monitoring. Berlin: Springer; 1991. p. 95–105.

    Chapter  Google Scholar 

  38. Ghaly RF, Stone JL, Levy WJ, Kartha R, Adlrete A, Brunner EB, et al. The effect of an anesthetic induction dose of midazolam on motor potentials evoked by transcranial magnetic stimulation in the monkey. J Neurosurg Anesth. 1991;3:20–5.

    Article  CAS  Google Scholar 

  39. Schonle PW, Isenberg C, Crozier TA, Dressler D, Machetanz J, Conrad B. Changes of transcranially evoked motor responses in man by midazolam, a short acting benzodiazepine. Neurosci Lett. 1989;101:321–4.

    Article  PubMed  CAS  Google Scholar 

  40. Crawford ME, Molkejensen F, Toftdahl DB, Madsen JB. Direct spinal effect of intrathecal and extradural midazolam on visceral noxius stimulation in rabbits. Br J Anaesth. 1993;70:642–6.

    Article  PubMed  CAS  Google Scholar 

  41. Faull RL, Villiger JW. Benzodiazepine receptors in the human spinal cord: a detailed anatomical and pharmacological study. Neuroscience. 1986;17:791–802.

    Article  PubMed  CAS  Google Scholar 

  42. Tobias JD, Goble TJ, Bates G, Anderson JT, Hoernschemeyer DG. Effects of dexmedetomidine on intraoperative motor and somatosensory evoked potential monitoring during spinal surgery in adolescents. Paediatr Anaesth. 2008;18:1082–8.

    Article  PubMed  Google Scholar 

  43. Yamamoto Y, Kawaguchi M, Kakimoto M, Inoue S, Furuya H. The effects of dexmedetomidine on myogenic motor evoked potentials in rabbits. Anesth Analg. 2007;104:1488–92.

    Article  PubMed  CAS  Google Scholar 

  44. Mahmoud M, Sadhasivam S, Salisbury S, Nick TG, Schnell B, Sestokas AK, et al. Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery. Anesthesiology. 2010;112:1364–73.

    Article  PubMed  CAS  Google Scholar 

  45. May DM, Jones SJ, Crockard HA. Somatosensory evoked potential monitoring in cervical surgery: identification of pre- and intraoperative risk factors associated with neurological deterioration. J Neurosurg. 1996;85:566–73.

    Article  PubMed  CAS  Google Scholar 

  46. Drummond JC. The lower limit of autoregulation: time to revise our thinking? Anesthesiology. 1997;86:1431–3.

    Article  PubMed  CAS  Google Scholar 

  47. Seyal M, Mull B. Mechanisms of signal change during intraoperative somatosensory evoked potential monitoring of the spinal cord. J Clin Neurophysiol. 2002;19:409–15.

    Article  PubMed  Google Scholar 

  48. Wiedemayer H, Fauser B, Sandalcioglu IE, Schafer H, Stolke D. The impact of neurophysiological intraoperative monitoring on surgical decisions: a critical analysis of 423 cases. J Neurosurg. 2002;96:255–62.

    Article  PubMed  Google Scholar 

  49. Brodkey JS, Richards DE, Blasingame JP, Nulsen FE. Reversible spinal cord trauma in cats: additive effects of direct pressure and ischemia. J Neurosurg. 1972;37:591–3.

    Article  PubMed  CAS  Google Scholar 

  50. Dolan EJ, Transfeld EE, Tator CH, Simmons EH, Hughes KF. The effect of spinal distraction on regional blood flow in cats. J Neurosurg. 1980;53:756–64.

    Article  PubMed  CAS  Google Scholar 

  51. Griffiths IR, Trench JG, Crawford RA. Spinal cord blood flow and conduction during experimental cord compression in normotensive and hypotensive dogs. J Neurosurg. 1979;50:353–60.

    Article  PubMed  CAS  Google Scholar 

  52. Klee MR, Pierau FK, Faber DS. Temperature effects on resting potential and spike parameters of cat motoneurons. Exp Brain Res. 1974;19:478–92.

    Article  PubMed  CAS  Google Scholar 

  53. Kraft GH. Effects of temperature and age on nerve conduction velocity in the guinea pig. Arch Phys Med Rehabil. 1972;53:328–32.

    PubMed  CAS  Google Scholar 

  54. Desmedt JE. Somatosensory evoked potentials in neuromonitoring. In: Desmedt JE, editor. Neuromonitoring for surgery. Amsterdam: Elsevier; 1989. p. 1–22.

    Google Scholar 

  55. Weight FF, Erulkar SD. Synaptic transmission and effects of temperature at the squid giant synapse. Nature. 1976;261:720–2.

    Article  PubMed  CAS  Google Scholar 

  56. Dolman J, Silvay G, Zappulla R, Toth C, Erickson N, Mindich BP, et al. The effect of temperature, mean arterial pressure, and cardiopulmonary bypass flows on somatosensory evoked potential latency in man. Thorac Cardiovasc Surg. 1986;34:217–22.

    Article  PubMed  CAS  Google Scholar 

  57. Lang M, Welte M, Syben R, Hansen D. Effects of hypothermia on median nerve somatosensory evoked potentials during spontaneous circulation. J Neurosurg Anesthesiol. 2002;14:141–5.

    Article  PubMed  Google Scholar 

  58. Hill R, Sebel PS, de Bruijn N, Neville W. Alterations in somatosensory evoked potentials associated with inadequate venous return during cardiopulmonary bypass. J Cardiothorac Anesth. 1987;1:48–50.

    Article  PubMed  CAS  Google Scholar 

  59. Deutsch E, Sohmer H, Weidenfeld J, Zelig S, Chowers I. Auditory nerve brain-stem evoked potentials and EEG during severe hypoglycemia. Electroencephalogr Clin Neurophysiol. 1983;55:714–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tod B. Sloan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sloan, T.B. (2012). General Anesthesia for Monitoring. In: Koht, A., Sloan, T., Toleikis, J. (eds) Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0308-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0308-1_15

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0307-4

  • Online ISBN: 978-1-4614-0308-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics