Skip to main content
  • 1669 Accesses

Abstract

Transcranial Doppler (TCD) ultrasound monitors change in cerebral perfusion. This is accomplished through noninvasive continuous measurement of blood flow-velocity within the largest intracranial blood vessels. Since normative velocity values may vary widely, the primary monitoring objective generally is the trending of relative velocity. Changes in blood flow and flow-velocity are proportional as long as blood viscosity and vessel diameter remain constant [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burrows FA, Bissonnette B. Monitoring the adequacy of cerebral perfusion during cardiopulmonary bypass in children using transcranial Doppler technology. J Neurosurg Anesthesiol. 1993;5:209–14.

    PubMed  CAS  Google Scholar 

  2. Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow-velocity in basal cerebral arteries. J Neurosurg. 1982;57:769–74.

    Article  PubMed  CAS  Google Scholar 

  3. Shen Q, Stuart J, Venkatesh B, et al. Inter-observer variability of the transcranial Doppler ultrasound technique: impact of lack of practice on the accuracy of measurement. J Clin Monit Comput. 1990;15:179–84.

    Article  Google Scholar 

  4. Bass A, Krupski WC, Schneier PA, et al. Intraoperative transcranial Doppler: limitations of the method. J Vasc Surg. 1989;10:549–53.

    PubMed  CAS  Google Scholar 

  5. Topcuoglu MA, Palacios IF, Buonanno FS. Contrast M-mode power Doppler ultrasound in the detection of right-to-left shunts: utility of submandibular internal carotid artery recording. J Neuroimaging. 2003;13:315–23.

    Article  PubMed  CAS  Google Scholar 

  6. Edmonds Jr HL. Monitoring of cerebral perfusion with transcranial Doppler ultrasound. In: Nuwer MR, editor. Intraoperative monitoring of neural function – handbook of clinical neurophysiology, vol. 8. Amsterdam: Elsevier; 2008. p. 909–23.

    Chapter  Google Scholar 

  7. Santalucia P, Feldmann E. The basic transcranial Doppler examination: ­technique and anatomy. In: Babikian VL, Wechsler LR, editors. Transcranial Doppler ultrasonography. 2nd ed. Boston: Butterworth-Heinemann; 1999. p. 13–31.

    Google Scholar 

  8. Edmonds HL Jr. Central nervous system monitoring. In: Kaplan JA, editor. Kaplan’s cardiac anesthesia. 6th ed. Philadelphia: Elsevier Saunders; 2011. pp. 466–95.

    Google Scholar 

  9. Edmonds Jr HL, Isley MR, Sloan T, Alexandrov A, et al. American Society of Neurophysiologic Monitoring (ASNM) & American Society of Neuroimaging (ASN) joint guidelines for transcranial Doppler (TCD) ultrasonic monitoring. J Neuroimag. 2010.

    Google Scholar 

  10. Clark JM, Skolnick Be, Gelfand R, et al. Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow-velocity in men at rest. J Cereb Blood Flow Metab. 1996;16:1255–62.

    Article  PubMed  CAS  Google Scholar 

  11. Edmonds Jr HL, Singer I, Sehic A, et al. Multimodality neuromonitoring for neurocardiology. J Interven Cardiol. 1998;11:197–204.

    Article  Google Scholar 

  12. Jørgensen LG. Transcranial Doppler ultrasound for cerebral perfusion. Acta Physiol Scand. 1995;625(Suppl):1–44.

    Google Scholar 

  13. Spencer MP. Transcranial Doppler monitoring and causes of stroke from carotid endarterectomy. Stroke. 1997;28:685–91.

    Article  PubMed  CAS  Google Scholar 

  14. McCarthy RJ. The value of transcranial Doppler in predicting cerebral ischaemia during carotid endarterectomy. Eur J Vasc Endovasc Surg. 2001;21:408–12.

    Article  PubMed  CAS  Google Scholar 

  15. Kim Y, Sin DS, Park HY, et al. Relationship between flow diversion on transcranial Doppler sonography and leptomeningeal collateral circulation in patients with middle cerebral artery occlusive disorder. J Neuroimaging. 2009;19:23–6.

    Article  PubMed  Google Scholar 

  16. Hirooka R, Ogasawara K, Sasaki M, et al. Magnetic resonance imaging in patients with cerebral hyperperfusion and cognitive impairment after carotid endarterectomy. J Neurosurg. 2008;108:1178–83.

    Article  PubMed  Google Scholar 

  17. Bakoyiannis CN, Tsekouras N, Georgopoulos S, et al. Can the diameter of endoluminal shunt influence the risk of hyperperfusion syndrome after carotid endarterectomy? Int Angiol. 2008;27:260–7.

    PubMed  CAS  Google Scholar 

  18. Wilson PV, Ammar AD. The incidence of ischemic stroke versus intracerebral hemorrhage after carotid endarterectomy: a review of 2,452 cases. Ann Vasc Surg. 2005;19:1–4.

    Article  PubMed  Google Scholar 

  19. Dalman JE, Beenakkers ICM, Moll FL, et al. Transcranial Doppler monitoring during carotid endarterectomy helps to identify patients at risk of postoperative hyperperfusion. Eur J Vasc Endovasc Surg. 1999;18:222–7.

    Article  PubMed  CAS  Google Scholar 

  20. Ogasawara K, Yamadate K, Kobayashi M, et al. Postoperative cerebral hyperperfusion associated with impaired cognitive function in patients undergoing carotid endarterectomy. J Neurosurg. 2005;102:38–44.

    PubMed  Google Scholar 

  21. Ogasawara K, Sakai N, Kuriowa T, et al. intracranial hemorrhage associated with cerebral hyperperfusion syndrome following carotid endarterectomy and carotid artery stenting: retrospective review of 4,494 patients. J Neurosurg. 2007;107:1130–6.

    Article  PubMed  Google Scholar 

  22. Hudetz JA, Hoffmann RG, Patterson KM, et al. Preoperative dispositional optimism correlates with a reduced incidence of postoperative delirium and recovery of postoperative cognitive function in cardiac surgical patients. J Cardiothorac Vasc Anesth. 2010;24:560–7.

    Article  PubMed  Google Scholar 

  23. Thomason JW, Shintani A, Peterson JF, et al. Intensive care unit delirium is an independent predictor of longer hospital stay: a prospective analysis of 261 non-ventilated patients. Crit Care. 2005;9:R375–81.

    Article  PubMed  Google Scholar 

  24. Rodriguez RA, Rubens F, Belway D, et al. Residual air in the venous cannula increases cerebral embolization at the onset of cardiopulmonary bypass. Eur J Cardiothorac Surg. 2006;29:175–80.

    Article  PubMed  Google Scholar 

  25. Garami Z, Charlton-Ouw KM, Broadbent KC, et al. A practical guide to transcranial Doppler monitoring during carotid interventions. Vascular Ultrasound Today. 2008;13:1–24.

    Google Scholar 

  26. Schramm P, Engelhard K, Scherhag A, et al. High-intensity transient signals during laparoscopic surgery in children. Br J Anaesth. 2010;104:224–7.

    Article  PubMed  CAS  Google Scholar 

  27. Koch S, Forteza A, Lavernia C, et al. Cerebral fat microembolism and cognitive decline after hip and knee replacement. Stroke. 2007;38:1079–81.

    Article  PubMed  Google Scholar 

  28. Wolf LG, Choudhary BP, Abu-Omar Y, et al. Solid and gaseous cerebral microembolization after biologic and mechanical aortic valve replacement: investigation with multirange and multifrequency transcranial Doppler ultrasound. J Thorac Cardiovasc Surg. 2008;135:512–20.

    Article  Google Scholar 

  29. Lepur D, Baršić B. Incidence of neurological complications in patients with native-valve infective endocarditis and cerebral microembolism: an open cohort study. Scand J Infect Dis. 2009;41:709–13.

    Article  Google Scholar 

  30. Kumral E, Balkir K, Uzuner N, et al. Microembolic signal detection in patients with symptomatic and asymptomatic lone atrial fibrillation. Cerebrovasc Dis. 2001;13:192–6.

    Article  Google Scholar 

  31. Sato K, Hanzawa K, Okamoto T, et al. Frequency analysis of high-intensity transient signals of transcranial Doppler ultrasound in patients supported with a left ventricular assist device. J Artif Organs. 2008;11:201–3.

    Article  PubMed  Google Scholar 

  32. Naylor AR, Hayes PD, Allroggen H, et al. Reducing the risk of carotid surgery: a 7-year audit of the role of monitoring and quality control assessment. J Vasc Surg. 2000;32:750–9.

    Article  PubMed  CAS  Google Scholar 

  33. Payne DA, Jones CI, Hayes PD, et al. Beneficial effects of clopidogrel combined with aspirin in reducing cerebral emboli in patients undergoing carotid endarterectomy. Circulation. 2004;109:1476–81.

    Article  PubMed  CAS  Google Scholar 

  34. Rodriguez RA, Rubens FD, Wozny D, et al. Cerebral emboli detected by transcranial Doppler during cardiopulmonary bypass are not correlated with postoperative cognitive deficits. Stroke. 2010;41:2229–35.

    Article  PubMed  Google Scholar 

  35. Martin KK, Wigginton JB, Babikian VL, et al. Intraoperative cerebral high-intensity transient signals and postoperative cognitive function: a systematic review. Am J Surg. 2009;197:55–63.

    Article  PubMed  Google Scholar 

  36. Sloan MA, Alexandrov AV, Tegeler CH, et al. Assessment: transcranial Doppler ultrasound. Neurology. 2004;62:1468–81.

    Article  PubMed  CAS  Google Scholar 

  37. van Lieshout JJ, Wieling W, Karemaker JM, et al. Syncope, cerebral perfusion and oxygenation. J Appl Physiol. 2003;94:833–48.

    PubMed  Google Scholar 

  38. Hancock SM, Mahajan RP, Athanassiou L. Noninvasive estimation of cerebral perfusion pressure and zero flow pressure in healthy volunteers: the effects of changes in end-tidal carbon dioxide. Anesth Analg. 2003;96:847–51.

    Article  PubMed  Google Scholar 

  39. Ogasawara K, Ogawa A, Yoshimoto T. Cerebrovascular reactivity to acetazolamide and outcome in patients with symptomatic internal carotid or middle cerebral artery occlusion. Stroke. 2002;33:1857–62.

    Article  PubMed  Google Scholar 

  40. Halpern P, Neufeld MY, Sade K, et al. Middle cerebral artery flow-velocity decreases and electroencephalogram (EEG) changes occur as acute hypercapnia reverses. Intensive Care Med. 2003;29:1650–5.

    Article  PubMed  Google Scholar 

  41. Hosada K, Kawaguchi T, Ishii K, et al. Comparison of conventional region of interest and statistical mapping method in brain single-photon emission computed tomography for prediction of hyperperfusion after carotid endarterectomy. Neurosurgery. 2005;57:32–41.

    Article  Google Scholar 

  42. du Plessis AJ, Jonas RA, Wypij D, et al. Perioperative effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 1997;114:991.

    Article  PubMed  Google Scholar 

  43. Svyatets M, Tolani K, Zhang M, et al. Perioperative management of deep hypothermic circulatory arrest. J Cardiothorac Vasc Anesth. 2010;24: 644–55.

    Article  PubMed  Google Scholar 

  44. Summors AC, Gupta AK, Matta BF. Dynamic cerebral autoregulation during sevoflurane anesthesia: a comparison with isoflurane. Anesth Analg. 1999;88:341–6.

    PubMed  CAS  Google Scholar 

  45. Bedforth NM, Hardman JG, Nathanson MH. Cerebral hemodynamic response to the introduction of desflurane: a comparison with sevoflurane. Anesth Analg. 2000;91:152–5.

    PubMed  CAS  Google Scholar 

  46. Brassard P, Seifert T, Wissenberg M, et al. Phenylepherine decreases frontal lobe oxygenation at rest but not during moderately intense exercise. J Appl Physiol. 2010;108:1472–8.

    Article  PubMed  CAS  Google Scholar 

  47. Strangaard S, Olesen J, Skinhøj E, et al. Autoregulation of brain circulation in severe arterial hypertension. Br Med J. 1973;1(5852):507–11.

    Article  Google Scholar 

  48. Bonnet MP, Larousse E, Asehnoune K, et al. Spinal anesthesia with bupivacaine decreases cerebral blood flow in former preterm infants. Anesth Analg. 2004;98:1280–3.

    Article  PubMed  Google Scholar 

  49. Neri E, Sassi C, Barabersi L, et al. Cerebral autoregulation after hypothermic circulatory arrest in operations on the aortic arch. Ann Thorac Surg. 2004;77:72–9.

    Article  PubMed  Google Scholar 

  50. Doblar DD. Cerebrovascular assessment of the high-risk patient: the role of transcranial Doppler ultrasound. J Cardiothorac Vasc Anesth. 1996;10:3–14.

    Article  PubMed  CAS  Google Scholar 

  51. Achtereekte HAM, van der Kruijk RA, Hekster REM, et al. Diagnosis of traumatic carotid artery dissection by transcranial Doppler ultrasound: case report and review of the literature. Surg Neurol. 1994;42:240–4.

    Article  PubMed  CAS  Google Scholar 

  52. Rosenkranz M, Gerloff C. Secondary bleeding into a subacute carotid wall hematoma. Circulation. 2010;131:e395–6.

    Article  Google Scholar 

  53. Schnaudigel S, Gröschel K, Pilgram SM, et al. New brain lesions after carotid stenting versus carotid endarterectomy. Stroke. 2008;39:1911–9.

    Article  PubMed  Google Scholar 

  54. Imai M, Hanaoka Y, Kemmotsuo K. Valve injury: a new complication of internal jugular vein cannulation. Anesth Analg. 1994;78:1041–6.

    PubMed  CAS  Google Scholar 

  55. Ganzel BL, Edmonds Jr HL, Pank JR, et al. Neurophysiologic monitoring to assure delivery of retrograde cerebral perfusion. J Thorac Cardiovasc Surg. 1997;113:748–57.

    Article  PubMed  CAS  Google Scholar 

  56. Estrera AL, Garami Z, Miller III CC, et al. Cerebral monitoring with transcranial Doppler ultrasonography improves neurologic outcome during repairs of acute type A aortic dissection. J Thorac Cardiovasc Surg. 2005;129:277–85.

    Article  PubMed  Google Scholar 

  57. Rodriguez RA, Cornel G, Semelhago L, et al. Cerebral effects in superior vena caval cannula obstruction: the role of brain monitoring. Ann Thorac Surg. 1997;64:1820–4.

    Article  PubMed  CAS  Google Scholar 

  58. Borger MA, Taylor RL, Weisel RD, et al. Decreased cerebral emboli during distal aortic arch cannulation: a randomized clinical trial. J Thorac Cardiovasc Surg. 1999;118:740–5.

    Article  PubMed  CAS  Google Scholar 

  59. Brooker RF, Brown WR, Moody DM, et al. Cardiotomy suction: a major source of brain lipid emboli during cardiopulmonary bypass. Ann Thorac Surg. 1998;65:1651–5.

    Article  PubMed  CAS  Google Scholar 

  60. Edmonds Jr HL. Protective effect of neuromonitoring during cardiac surgery. Ann N Y Acad Sci. 2005;1053:12–9.

    Article  PubMed  Google Scholar 

  61. Yeh Jr TJ, Austin III EH, Sehic A, et al. Role of neuromonitoring in the detecting and correction of cerebral air embolism. J Thorac Cardiovasc Surg. 2003;126:589–91.

    Article  PubMed  Google Scholar 

  62. Valdueza JM, Draganski B, Hoffmann O, et al. Analysis of CO2 vasomotor reactivity and vessel diameter changes by simultaneous venous and arterial Doppler recordings. Stroke. 1999;30:81–6.

    Article  PubMed  CAS  Google Scholar 

  63. McCall ML, Taylor HW. The action of hydergine on the circulation and metabolism of the brain in toxemia of pregnancy. Am J Med Sci. 1953;226:537–41.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey L. Edmonds .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Edmonds, H.L. (2012). Transcranial Doppler. In: Koht, A., Sloan, T., Toleikis, J. (eds) Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0308-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0308-1_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0307-4

  • Online ISBN: 978-1-4614-0308-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics