Skip to main content

Kernel Learning Foundation

  • Chapter
  • First Online:
Kernel Learning Algorithms for Face Recognition

Abstract

Nonlinear information processing algorithms can be designed by means of linear techniques in implicit feature spaces induced by kernel functions. Kernel methods are algorithms that, by replacing the inner product with an appropriate positive definite function, implicitly perform a nonlinear mapping of the input data to a high-dimensional feature space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bashkirov OA, Braverman EM, Muchnik IB (1964) Potential function algorithms for pattern recognition learning machines. Automat Remote Contr 25:629–631

    MATH  Google Scholar 

  2. Aizerman MA, Braverman EM, Rozonoer LI (1964) Theoretical foundations of the potential function method in pattern recognition learning. Automat Remote Contr 25:821–837

    MathSciNet  Google Scholar 

  3. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Haussler D (ed) Proceedings of 5th Annual ACM workshop computation learning theory, Pittsburgh, pp 144–152

    Google Scholar 

  4. Vapnik V (1982) Estimation of dependences based on empirical data. Springer, New York

    MATH  Google Scholar 

  5. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Google Scholar 

  6. Statistical Learning Theory (1998)(Adaptive and Learning Systems for Signal Processing, Communications and Control). Wiley, London

    Google Scholar 

  7. Cortes C, Vapnik VN (1995) Support vector networks. Mach Learn 20:273–297

    MATH  Google Scholar 

  8. Schölkopf B, Smola A, Müller K-R (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10:1299–1319

    Article  Google Scholar 

  9. Mika S, Rätsch G, Weston J, Schölkopf B, Müller K-R (1999) Fisher discriminant analysis with kernels. In: Proceedings of IEEE neural networks for signal processing workshop, NNSP 99

    Google Scholar 

  10. Frieß TT, Cristianini N, Campbell C (1998) The Kernel-Adatron algorithm: a fast and simple learning procedure for support vector machines. Paper presented at the 15th International conference machine learning, San Mateo

    Google Scholar 

  11. Van Hulle MM (1998) Kernel-based equiprobabilistic topographic map formation. Neural Comput 10:1847–1871

    Article  Google Scholar 

  12. Schölkopf B, Burges C, Smola A (eds) (1998) Advances in Kernel methods, support vector learning. MIT Press, Cambridge

    MATH  Google Scholar 

  13. Saha B, Goebel K, Poll S, Christophersen J (2007) An integrated approach to battery health monitoring using Bayesian regression and state estimation. In: Proceedings of autotestcon, pp 646–653

    Google Scholar 

  14. Zio E, Di Maio F (2010) A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system. Reliab Eng Syst Saf 95:49–57

    Article  Google Scholar 

  15. Luo M, Wang D, Pham M, Low CB, Zhang JB, Zhang DH, Zhao YZ (2005) Model-based fault diagnosis/prognosis for wheeled mobile robots: a review. In: Proceedings of IECON, pp 2267–2272

    Google Scholar 

  16. Basak D, Pal S, Patranabis DC (2003) Support vector regression. Neural Inf Process: Lett Rev 11(10):203–224

    Google Scholar 

  17. Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222

    Article  MathSciNet  Google Scholar 

  18. Cauwenberghs G, Poggio T (2001) Incremental and decremental support vector machine learning. Mach Learn 44(13):409–415

    Google Scholar 

  19. Kim H, Park H (2004) Incremental and decremental least squares support vector machine and its application to drug design. In: Proceedings of the 2004 IEEE computational systems bioinformatics conference, Stanford, pp 656–657

    Google Scholar 

  20. Kivinen J, Smola AJ, Williamson RC (2004) Online learning with Kernels. IEEE Trans Signal Process 52(8):2165–2176

    Article  MathSciNet  Google Scholar 

  21. Ma JH, Theiler J, Perkins S (2003) Accurate online support vector regression. Neural Comput 15(11):2683–2703

    Article  MATH  Google Scholar 

  22. Martin M (2002) Online support vector machine regression. Springer, Berlin. ECML, LNAI, pp 282–294

    Google Scholar 

  23. Syed NA, Liu H, Sung KK (1999) Incremental learning with support vector machines. In: Proceedings of international joint conference on artificial intelligence, vol 2. Stockholm, pp 272–276

    Google Scholar 

  24. Vijayakumar S, Ogawa H (1999) RKHS-based functional analysis for exact incremental learning. Neurocomputing 29(1/3):85–113

    Article  Google Scholar 

  25. Engel Y, Mannor S, Meir R (2004) The Kernel recursive least- squares algorithm. IEEE Trans Signal Process 52(8):2275–2285

    Article  MathSciNet  Google Scholar 

  26. Jiao L, Bo L, Wang L (2007) Fast sparse approximation for least squares support vector machine. IEEE Trans Neural Netw 18(3):685–697

    Article  Google Scholar 

  27. Wang DC, Jiang B (2007) Review of SVM-based control and online training algorithm. J Syst Simul 19(6):1177–1181

    Google Scholar 

  28. Wu Q, Liu WY, Yang YH (2007) Time series online prediction algorithm based on least squares support vector machine. J Cent Sou Univ Technol 14(3):442–446

    Article  Google Scholar 

  29. Zhang HR, Wang XD (2006) Incremental and online learning algorithm for regression least squares support vector machine. Chin J Comput 29(3):400–406

    Google Scholar 

  30. Wikipedia Online. http://en.wikipedia.org/wiki

  31. Tutorial slides by Andrew Moore. http://www.cs.cmu.edu/~awm

  32. Vapnik V (1995) The nature of statistical learning theory. Springer, New York. ISBN 0-387-94559-8

    Book  MATH  Google Scholar 

  33. Burges C (1998) A tutorial on support vector machines for pattern recognition. In Data mining and knowledge discovery, vol 2. Kluwer Academic Publishers, Boston

    Google Scholar 

  34. Vapnik V, Golowich S, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. In: Mozer M, Jordan M, Petsche T (eds) Advances in neural information processing systems 9. MIT Press, Cambridge, pp 281–287

    Google Scholar 

  35. Brand M, Hertzmann A (2000) Style machines. In: Proceedings of ACM Siggraph00,pp 183–192

    Google Scholar 

  36. Bregler C, Covell M, Slaney M (1997) Video rewrite: driving visual speech with audio. In: Proceedings of ACM Siggraph97, pp 353–360

    Google Scholar 

  37. Ghahramani Z, Jordan M (1997) Factorial hidden Markov models. Machine Learn 29:245–273

    Article  MATH  Google Scholar 

  38. Jojic N, Petrovic N, Frey BJ, Huang TS (2000) Transformed hidden Markov models: estimating mixture models of images and inferring spatial transformations in video sequences. In: Proceedings of IEEE conference on computer vision pattern recognition

    Google Scholar 

  39. Pullen K, Bregler C (2001) Life-like animations with motion textures. Available from <http://graphics.stanford.edu/~pullen/motion_texture/>

  40. Pavlovic V, Regh JM (2000) Impact of dynamic model learning on classification of human motion. In: Proceedings of CVPR00

    Google Scholar 

  41. Hyvinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New York

    Book  Google Scholar 

  42. Bartlett MS, Movellan JR, Sejnowski TJ (2002) Face recognition by independent component analysis. IEEE Trans Neural Netw 13(6):1450–1464

    Article  Google Scholar 

  43. Liu C, Wechsler H (2003) Independent component analysis of Gabor features for face recognition. IEEE Trans Neural Netw 14(4):919–928

    Article  Google Scholar 

  44. Yang J, Gao X, Zhang D, Yang J (2005) Kernel ICA: an alternative formulation and its application to face recognition. Pattern Recogn 38(10):1784–1787

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Bao Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, JB., Chu, SC., Pan, JS. (2014). Kernel Learning Foundation. In: Kernel Learning Algorithms for Face Recognition. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0161-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0161-2_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0160-5

  • Online ISBN: 978-1-4614-0161-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics