Skip to main content

A General Fixed Point Method for the Stability of Cauchy Functional Equation

  • Chapter
  • First Online:
Functional Equations in Mathematical Analysis

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 52))

Abstract

In this note, we extend the ideas in [12] to obtain some general stability results for additive Cauchy functional equations in β-normed spaces. It is worth noting that two fixed point alternatives together with the error estimations for generalized contractions of type Bianchini–Grandolfi and Matkowski are pointed out, and then used as fundamental tools. Some examples which emphasize the very general hypotheses, are also given.

Mathematics Subject Classification (2000): Primary 39B62,39B72,39B82,47H09

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, R.P., Xu, B., Zhang, W.: Stability of functional equations in single variable. J. Math. Anal. Appl. 288, 852–869 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aoki, T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2, 64–66 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baker, J.A.: The stability of certain functional equations. Proc. Amer. Math. Soc. 112, 729–732 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berinde, V.: Iterative Approximation of Fixed Points. Lecture Notes in Math. 1912 (2007)

    Google Scholar 

  5. Bianchini, R.M., Grandolfi, M.: Transformazioni di tipo contracttivo generalizzato in uno spazio metrico. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 45, 212–216 (1968)

    Google Scholar 

  6. Bourgin D.G.: Classes of transformations and bordering transformations. Bull. Amer. Math. Soc. 57, 223–237 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cădariu, L., Radu, V.: A general theorem of stability for the Cauchy’s equation. Bul. Ştiinţ. Univ. Politeh. Timiş. Ser. Mat. Fiz. 47(61), no. 2, 14–28 (2002)

    Google Scholar 

  8. Cădariu, L., Radu, V.: Fixed points and the stability of Jensen’s functional equation. JIPAM. J. Inequal. Pure Appl. Math. 4(1) (2003), Art. 4. http://jipam.vu.edu.au

  9. Cădariu, L., Radu, V.: On the stability of Cauchy functional equation: a fixed points approach. In: Sousa Ramos, J., Gronau, D., Mira, C., Reich, L., Sharkovsky, A. (eds.) Iteration Theory (ECIT ’02), Proceedings of European Conference of Iteration Theory, Evora, Portugal, September 1–7, 2002, pp. 43–52. Grazer Math. Ber. 346, (2004)

    Google Scholar 

  10. Cădariu, L., Radu, V.: Fixed points and the stability of quadratic functional equations. An. Univ. Vest Timiş. Ser. Mat.-Inform. 41(1), 25–48 (2003)

    MATH  Google Scholar 

  11. Cădariu, L., Radu, V.: Fixed points in generalized metric spaces and the stability of a quartic functional equation. Bul. Ştiinţ. Univ. Politeh. Timiş. Ser. Mat. Fiz. 50(64), no. 2, 25–34 (2005)

    Google Scholar 

  12. Cădariu, L., Radu, V.: A general fixed point method for the stability of Jensen functional equation. Bul. Ştiinţ. Univ. Politeh. Timiş. Ser. Mat. Fiz. 51(65), no. 2, 63–72 (2006)

    Google Scholar 

  13. Cădariu, L., Radu, V.: Fixed points in generalized metric spaces and the stability of a cubic functional equation. In: Cho, Y.-J., Kim, J.-K., Kang, S.-M. (eds.) Fixed Point Theory and Applications 7, pp. 53–68. Nova Science Publ. (2007)

    Google Scholar 

  14. Cădariu, L., Radu, V.: Stability results for a functional equation of quartic type. Automat. Comput. Appl. Math. 15, 7–21 (2006)

    Google Scholar 

  15. Diaz, J.B., Margolis, B.: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc. 74, 305–309 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  16. Forti, G.L.: An existence and stability theorem for a class of functional equations. Stochastica 4, 23–30 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Forti, G.L.: Hyers–Ulam stability of functional equations in several variables. Aequationes Math. 50, 143–190 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Forti, G.L.: Comments on the core of the direct method for proving Hyers–Ulam stability of functional equations. J. Math. Anal. Appl. 295, 127–133 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gajda, Z.: On stability of additive mappings. Internat. J. Math. Math. Sci. 14, 431–434 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Găvruţa, P.: A generalization of the Hyers Ulam Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431–436 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hyers, D.H.: On the stability of the linear functional equation. Prod. Natl. Acad. Sci. USA 27, 222–224 (1941)

    Article  MathSciNet  Google Scholar 

  22. Hyers, D.H., Isac, G., Rassias, Th.M.: Stability of Functional Equations in Several Variables. Birkhauser, Basel (1998)

    Book  MATH  Google Scholar 

  23. Jachymski, J., Jóźwik, I.: Nonlinear contractive conditions: a comparison and related problems. In: Jachymski, J. et al. (eds.) Fixed Point Theory and Its Applications - Proc. of the Internat. Conf. Bȩdlewo, Poland, August 1–5, 2005, pp. 123–146. Polish Academy of Sciences, Institute of Mathematics, Banach Center Publications 77, (2007)

    Google Scholar 

  24. Jung, S.-M.: Hyers–Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor, Florida (2002)

    Google Scholar 

  25. Kirk, W.A., Sims, B. (eds.): Handbook of Metric Fixed Point Theory. Kluwer Academic Publishers, Dordrecht (2001)

    MATH  Google Scholar 

  26. Matkowski, J.: Integrable solutions of functional equations. Dissertationes Math. 127, 63 pp. (1975)

    Google Scholar 

  27. Radu, V.: The fixed point alternative and the stability of functional equations. Fixed Point Theory Cluj-Napoca 4(1), 91–96 (2003)

    Google Scholar 

  28. Rassias, Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72, 297–300 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rassias, Th.M.: On the stability of functional equations and a problem of Ulam. Acta Appl. Math. 62, 23–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rus, I.A.: Generalized Contractions and Applications. Cluj University Press, Cluj-Napoca (2001)

    MATH  Google Scholar 

  31. Simons, S.: Boundedness in linear topological spaces. Trans. Amer. Math. Soc. 113, 169–180 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. I. Fixed-Point Theorems. Springer-Verlag, New York (1986)

    Book  MATH  Google Scholar 

  33. Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publ., New York, (1960); reprinted as: Problems in Modern Mathematics. Wiley, New York (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liviu Cădariu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cădariu, L., Radu, V. (2011). A General Fixed Point Method for the Stability of Cauchy Functional Equation. In: Rassias, T., Brzdek, J. (eds) Functional Equations in Mathematical Analysis. Springer Optimization and Its Applications(), vol 52. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0055-4_3

Download citation

Publish with us

Policies and ethics