Skip to main content

Blood Flow and Tumour-Induced Angiogenesis: Dynamically Adapting Vascular Networks

  • Chapter
  • First Online:
Modeling Tumor Vasculature

Abstract

Over the past decade or so, there has been a large number of modeling approaches aimed at elucidating the most important mechanisms affecting the formation of new capillaries from parent blood vessels (angiogenesis). Most studies have focussed upon the way in which capillary sprouts are initiated and migrate in response to diffusible chemical stimuli supplied by hypoxic stromal cells and leukocytes in the contexts of solid tumour growth and wound healing. However, relatively few studies have examined the important role played by blood perfusion during angiogenesis and fewer still have explored the ways in which a dynamically evolving bed architecture can affect the distribution of flow within it. From the perspective of solid tumour growth and, perhaps more importantly, its subsequent treatment, it would clearly be of some benefit to understand this coupling between vascular structure and perfusion more fully. This chapter describes a hybrid model of vascular network formation coupled with flow and then focuses on the implications of such a coupling upon chemotherapeutic, anti-angiogenic, and anti-vascular treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarcon T, Byrne HM, Maini PK (2003) A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225(2), 257–274.

    CAS  PubMed  Google Scholar 

  • Anderson ARA, Chaplain MAJ (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–899.

    CAS  PubMed  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circulation Research, 97, 512–523.

    CAS  PubMed  Google Scholar 

  • Ausprunk DH, Folkman J (1977) Migration and proliferationof endothelial cells in preformed and newly formed blood vessels during tumour angiogenesis. Microvasc. Res. 14, 53–65.

    CAS  PubMed  Google Scholar 

  • Bagley RG, et al. (2006) Pericytes from human non-small cell lung carcinomas: An attractive target for anti-angiogenic therapy. Microvascular Res. 71, 163–174.

    CAS  Google Scholar 

  • Baish JW, Gazit Y, Berk DA, Nozue M, Baxter LT, Jain RK (1996) Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation-based network model. Microvasc. Res. 51, 327–346.

    CAS  PubMed  Google Scholar 

  • Benjamin LE, I. Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125, 1591–1598.

    Google Scholar 

  • Bray D (1992) Cell Movements, New-York: Garland Publishing.

    Google Scholar 

  • Brekken RA, Thorpe PE (2001) Vascular endothelial growth factor and vascular targeting of solid tumors. 21, 4221–4229.

    CAS  Google Scholar 

  • Chantrain CF, Henriet P, Jodele S, Emonard H, Feron O, Courtoy PJ, DeClerck YA, Marbaix E (2006) Mecanisms of pericyte recruitment in tumour angiogenesis: A new role for metalloproteinases. European J. Cancer 42, 310–318.

    CAS  Google Scholar 

  • Davis GE, Pintar Allen KA, Salazar R, Maxwell SA (2000) Matrix metalloproteinase-1 and –9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices. J. Cell Sci. 114, 917–930.

    Google Scholar 

  • El-Kareh AW, Secomb TW (1997) Theoretical models for drug delivery to solid tumours. Crit. Rev. Biomed. Eng. 25(6), 503–571.

    CAS  PubMed  Google Scholar 

  • Folkman J, Klagsbrun M (1987) Angiogenic factors. Science. 235, 442–447.

    CAS  PubMed  Google Scholar 

  • Gee MS, Procopio WN, Makonnen S, Feldman MD, Yeilding NW, Lee WMF (2003) Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Am. J. Path. 162, 1, 183–193.

    PubMed  PubMed Central  Google Scholar 

  • Gödde R, Kurz H (2001) Structural and biophysical simulation of angiogenesis and vascular remodelling. Developmental Dynamics 220, 387–401.

    PubMed  Google Scholar 

  • Hidalgo M, Eckhardt SG (2001) Development of matrix metalloproteinase inhibitors in cancer therapy. Journal of the National Cancer Institute 93, 178–193.

    CAS  PubMed  Google Scholar 

  • Hughes S, Gardiner T, Hu P, Baxter L, Rosinova E, Chan-Ling T (2006) Altered pericyte-endothelial relations in the rat retina during aging: Implications for vessel stability. Neurobiology of Aging 27, 1838–1847.

    CAS  PubMed  Google Scholar 

  • Izumi Y et al. (2002) Tumour biology: herceptin acts as an antiangiogenic cocktail. Nature 416, 279–280.

    CAS  PubMed  Google Scholar 

  • Jackson TL, Lubkin SR, Murray JD (1999) Theoretical analysis of conjugate localization in two-step cancer chemotherapy. J. Math. Biol. 39, 353–376.

    CAS  PubMed  Google Scholar 

  • Jain RK (2003) Molecular regulation of vessel maturation. Nat. Med. 9, 685–93.

    CAS  PubMed  Google Scholar 

  • Krenz GS, Dawson CA (2002) Vessel distensibility and flow distribution in vascular trees. J. Math. Biol. 44, 360–374.

    PubMed  Google Scholar 

  • Kumar CC (2000). Targeting integrins avb3 and avb5 for blocking tumour-induced angiogenesis. Adv. Exp. Med. Biol. 476, 169–180.

    CAS  PubMed  Google Scholar 

  • Levine HA, Pamuk S, Sleeman BD, Nielsen-Hamilton M (2001) Mathematical modeling of the capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull. Math. Biol. 63(5), 801–863.

    CAS  PubMed  Google Scholar 

  • McDougall SR, Anderson ARA, Chaplain MAJ, and Sherratt JA (2002) Mathematical modeling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64(4), 673–702.

    CAS  PubMed  Google Scholar 

  • McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical modeling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. Journal of Theoretical Biology 241, 564–589.

    PubMed  Google Scholar 

  • Madri JA, Pratt BM (1986) Endothelial cell-matrix interactions: in vitro models of angiogenesis. J. Histochem. Cytochem. 34, 85–91.

    CAS  PubMed  Google Scholar 

  • Mancuso MR, et al. (2006) Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J. Clin. Investigation. 116, (10), 2610–2621.

    CAS  Google Scholar 

  • Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Path. 160, 985–1000.

    PubMed  PubMed Central  Google Scholar 

  • Munn LL (2003) Aberrant vascular architecture in tumors and its importance in drug-based therapies. Drug Discovery Today 8, 396–403.

    PubMed  Google Scholar 

  • Paweletz N, Knierim M (1989) Tumor-related angiogenesis. Crit. Rev. Oncol. Hematol. 9, 197–242.

    CAS  PubMed  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (1996) Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res, 32, 654–667.

    CAS  PubMed  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (1998) Structural adaptation and stability of microvascular netwoks: theory and simulation. Am. J. Physiol. 275 (Heart Circ. Physiol. 44), H349–H360.

    Google Scholar 

  • Pries AR, Reglin B, Secomb TW (2001a) Structural adaptation of microvascular networks: functional roles of adaptive responses. Am. J. Physiol. Heart Circ. Physiol. 281, H1015–H1025.

    CAS  PubMed  Google Scholar 

  • Pries AR, Reglin B, Secomb TW (2001b) Structural adaptation of vascular networks: role of the pressure response. Hypertension 38, 1476–1479.

    CAS  PubMed  Google Scholar 

  • Quarteroni A, Tuveri M, Veneziani A (2000) Computational vascular fluid dynamics: problems, models and methods. Comput. Visual. Sci. 2, 163–197.

    Google Scholar 

  • Rafil S, et al. (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nature Reviews Cancer 2, 826–835.

    Google Scholar 

  • Rouget C (1873) Memoire sur le developpement, la structure et les proprietes physiologiques des capillaires sanguins et lymphatiques. Arch. Physiol. Norm. Pathol. 5: 603–663.

    Google Scholar 

  • Secomb TW (1995) Mechanics of blood flow in the microcirculation. In “Biological Fluid Dynamics.” eds. C.P. Ellington and T.J. Pedley. Company of Biologists, Cambridge, pp. 305–321.

    Google Scholar 

  • Schoefl GI (1963) Studies of inflammation III. Growing capillaries: Their structure and permeability. Virchows Arch. Path. Anat. 337, 97–141.

    CAS  Google Scholar 

  • Sholley MM, Ferguson GP, Seibel HR, Montour JL, Wilson JD (1984) Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest. 51, 624–634.

    CAS  PubMed  Google Scholar 

  • Stéphanou A, McDougall SR, Anderson ARA, Chaplain MAJ (2005a) Mathematical modeling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math. Comp. Model. 41, 1137–1156.

    Google Scholar 

  • Stéphanou A, McDougall SR, Anderson ARA, Chaplain (2005b) Mathematical modeling of the influence of blood rheological properties upon adaptive tumour-induced angiogenesis. Math. Comp. Model. 44, 96–123.

    Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17, 463–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tozer GM, Kanthou C, Baguley BC (2005) Disrupting tumour blood vessels. Nature Reviews Cancer Vol 5 (June 2005), 423–433.

    CAS  Google Scholar 

  • Yan L, Moses MA, Huang S, Ingber D (2000) Adhesion-dependent control of matrix metalloproteinase-2 activation in human capillary endothelial cells. J. Cell Sci. 113, 3979–3987.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MAJC and SMcD gratefully acknowledge the support of BBSRC Grant BBF0022541 “Guidance cues and pattern prediction in the developing retinal vasculature: a combined experimental and theoretical modeling approach”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. J. Chaplain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chaplain, M.A.J., McDougall, S.R., Anderson, A.R.A. (2012). Blood Flow and Tumour-Induced Angiogenesis: Dynamically Adapting Vascular Networks. In: Jackson, T.L. (eds) Modeling Tumor Vasculature. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0052-3_8

Download citation

Publish with us

Policies and ethics