Skip to main content

Mathematical Modeling of the VEGF Receptor

  • Chapter
  • First Online:
Modeling Tumor Vasculature
  • 934 Accesses

Abstract

This chapter is devoted to the formulation and analysis of several models of the VEGF receptor and the initial steps in the signalling cascade following receptor activation. Our models take into consideration different factors and processes such as receptor cross-linking, endocytosis, recycling, degradation and synthesis. The effect of each one of these factors is studied. In particular, we present an analysis of a stochastic model of the vascular endothelial growth factor (VEGF) receptor, which accounts for ligand binding-induced oligomerisation, activation of SH2 domain-carrying kinases and receptor internalization. This is an analysis, based upon a generalisation of a WKB approximation of the solution of the corresponding Master Equation, of the role and contribution of each of these processes to the overall behaviour of the VEGF/VEGF receptor (VEGFR) system. The results of this analysis, in turn, allow us to formulate plausible mechanisms for tumour resistance to antiangiogenic therapy. We predict that tumour-mediated overexpression of VEGFRs in the endothelial cells (ECs) of tumour-engulfed vessels leads to an increased sensitivity of the ECs to low concentrations of VEGF, thus endowing the tumour with increased resistance to antiangiogenic treatment. We then show using a simplified version of the above model, that it exhibits different dynamical behaviours, which account for different cell responses to stimulation with growth factor, from perfect adaptation to sustained response thus providing a framework which attempts to understand how a single sensorial system can produce a variety of different responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These three types of VEGFR are surface receptors. There is also a soluble form of VEGFR-1.

  2. 2.

    Throughout the paper, we use the same covention: an upper-case letter represents numbers of molecules of a given type, whereas the corresponding lower-case letter represents the proportion of molecules of that particular kind with respect to the total number of molecules. An exception to this rule is L, whose meaning is explained in the text.

  3. 3.

    Teis and Huber (2003) distinguish between active and inactive RTKs. We will assume that “active” refers to dimerised receptors, which seems to be pretty clear from the context, and that “inactive” refers to both unbound receptors and non-dimerised ligand/receptor complexes.

  4. 4.

    Within the statistical physics community, this approximation is often referred to as the eikonal approximation.

  5. 5.

    Kubo et al. (1973) states the multidimensional result without a proof.

  6. 6.

    The system (1.13)–(1.26) has 14 equations but the conservation law \(u + {u}^{i} + b + {b}^{i} + 2{ \sum \nolimits }_{j}({x}_{j} + {x}_{j}^{i}) = {n}_{R}\) allows us to reduce the dimensionality of the system by one unit.

  7. 7.

    In fact, this method produces a hierarchy of “kinetic” equations where the cumulants of order n depend on the all the cumulants of order up to n − 1.

References

  1. Alarcón, T. and Page, K.M. (2006). Stochastic models of receptor oligomerisation by bivalent ligand. J. R. Soc. Interface. 3, 545-559.

    PubMed  PubMed Central  Google Scholar 

  2. Alarcón, T. and Page, K.M. (2007). Mathematical models of the VEGF receptor and its role in cancer therapy. J. R. Soc. Interface. 4, 283-304.

    PubMed  Google Scholar 

  3. Autiero, M., Waltenberg, J., Communi, D., Kranz, A., Moons, L., Lambrechts, D., Kroll, J., Plaisance, S., De Mol, M. Bono, F., Kilche, S., Fellbrich, G., Ballmer-Hofer, K., Maglione, D., Mayer-Beyrle, U., Dewerchin, M., Dombrowski, S., Stanimirovic, D., Van Hummelen, P., Heio, C., Hicklin, D.J., Persico, G., Herbert, J.M., Shibuya, M., Collen, D., Conway E.M., Carmeliet, P. (2003). Role of PIGF in the intra- and inter-molecular cross-talk between the VEGF receptor Flt1 and Flk1. Nat. Med. 9. 936-943.

    CAS  PubMed  Google Scholar 

  4. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. (2002). Molecular biology of the cell. Garland Publishing, New York, NY (USA).

    Google Scholar 

  5. Alon, U., M.G. Surette, N. Barkai, S. Leibler. (1999). Robustness in bacterial chemotaxis. Nature. 347, 168-171.

    Google Scholar 

  6. Amlal, H., Faroqui, S., Balasubramaniam, A., and Sheriff, S. (2006). Estrogen up-regulates neuropeptide YY1 receptor expression in a human breast cancer cell line. Cancer Res. 66, 3706-3714.

    CAS  PubMed  Google Scholar 

  7. Berger, G., and Benjamin, L.E. (2003). Tumorigenesis and the angiogenic switch. Nature Rev. Cancer. 3, 401-410.

    Google Scholar 

  8. Cai, J., Jians, W.G., Ahmed, A. and Bulton, M. (2006). Vascular endothelial growth factor induced cells proliferation is regulated by interaction between VEGFR-s, SH-PTP1 and eNOS. Microvasc. Res. 71, 20-31.

    CAS  PubMed  Google Scholar 

  9. Cross, M.J., Dixelius, J., Matsumoto, T., and Claesson-Welsh, L. (2003). VEGF-receptor signal transduction. Trends Biochem. Sci. 28, 488-494.

    CAS  Google Scholar 

  10. Dixelius, J., Makinen, T., Wirzenius, M., Karkkainen, M.J., Wernstedt, C., Alitalo, K., Claesson-Welsh, L. (2003). Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerisation with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J. Biol. Chem. 278, 40973-40979.

    CAS  PubMed  Google Scholar 

  11. Ebens, A., K. Brose, E.D. Leonardo, M.G. Hanson, F. Bladt, C. Birchmeier, B.A. Barres, M. TessierLavigne. (1996). Hepatocyte growth factor scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron. 17, 1157-1172.

    CAS  PubMed  Google Scholar 

  12. Felder, S., Zhou, M., Hu, P., Urena, J., Ullrich, A., Chaudhuri, M., White, M., Shoelson, S.E., and Schlessinger, J. (1993). SH2 domains exhibit high affinity binding to tyrosine-phosphorylated peptides yet al.so exhibit rapid dissociation and exchange. Mol. Cell. Biol. 13, 1449-1455.

    CAS  Google Scholar 

  13. Ferrara, N. (2002). Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin. Oncol. 29 (6 Suppl. 16), 10-14.

    CAS  PubMed  Google Scholar 

  14. Grotendorst, G.R., Chang, T., Seppa, H.E., Kleinman, H.K., and Martin, G.R. (1982). Platelet-derived growth factor is a chemoattractant for vascular smooth muscle cells. J. Cell Physiol. 113, 261-266.

    CAS  Google Scholar 

  15. Hampton, T. (2005). Antiangiogenic therapy a two-trick pony? JAMA. 293, 1051.

    CAS  PubMed  Google Scholar 

  16. Helmreich, E.J.M. (2001). The biochemistry of cell signalling. Oxford University Press, New York, NY (USA).

    Google Scholar 

  17. Hicklin, D.J., and Ellis, L.M. (2005). Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23, 1011-1027.

    CAS  PubMed  Google Scholar 

  18. Holash, J., Wiegand, S.J., Yancopoulos, G.D. (1999). New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene. 18, 5356-5362.

    CAS  PubMed  Google Scholar 

  19. Jain, R. (2005). Normalization of tumour vasculature: an emerging concept in antiangiogenic therapy Science. 307, 58-62.

    Google Scholar 

  20. Kitahara, K. (1973). The Hamilton-Jacobi equation approach to fluctuation phenomena Adv. Chem. Phy. 29, 85-111.

    Google Scholar 

  21. Klominek, J., Baskin, B., and Hauzenberger, D. (1998). Platelet-derived growth factor (PDGF) BB acts as a chemoattractant for human malignant mesothelioma cells via PDGF receptor β-integrin α3β1 interaction. Clin. Exp. Metastasis. 16, 529-539.

    CAS  PubMed  Google Scholar 

  22. Knox, B.E., P.N. Devreotes, A. Goldbeter, L.A. Segel. (1986). A molecular mechanism for sensory adaptation based on ligand-induced receptor modification Proc. Nat. Acad. Sci. 83, 2345-2349.

    CAS  Google Scholar 

  23. Kubo, R., Matsuo, K., and Kitahara, K. (1973). Fluctuation and relaxation of macrovariables J. Stat. Phys. 9, 51-96.

    Google Scholar 

  24. Lauffenburger, D.A., and Linderman, J.J. (1993). Receptors: models for binding, trafficking, and signalling. Oxford University Press, New York, (USA).

    Google Scholar 

  25. Lash, G.E., A.Y. Warren, S. Underwood, P.N. Baker. (2003). Vascular endothelial growth factor is a chemoattractant for trophoblast cells. Placenta. 24, 549-556.

    CAS  PubMed  Google Scholar 

  26. Levchenko, A., P.A. Iglesias. (2002). Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Biophys. J. 82, 50-63.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mac Gabham, F., and Popel, A.S. (2004). Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 286, H153-H164.

    Google Scholar 

  28. Mac Gabham, F., and Popel, A.S. (2005a). Differential binding of VEGF isoforms to VEGF receptor 2 in the presence of neuropilin-1: a computational model. Am. J. Physiol. Heart Circ. Physiol. 288, H2851-H2860.

    Google Scholar 

  29. Mac Gabham, F., and Popel, A.S. (2005b). Monte Carlo simulations of VEGF binding to cell surface receptors in vitro. Biochim. Biophys. Acta – Mol. Cell Res. 1746, 95-107.

    Google Scholar 

  30. Marshall, C.J. (1995). Specifity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 80, 179-185.

    CAS  PubMed  Google Scholar 

  31. Mitchell, H., A. Chowdhury, R.E. Pagano, E.B. Leof. (2004). Ligand-dependent and -independent tranforming growth factor-β receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Mol. Biol. Cell. 15, 4166-4178.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohshima, M., Y. Noguchi, Y. Ito, M. Maeno, K. Otsuka. (2001). Hepatocyte growth factor secreted by periodontal ligament and gingival fibroblasts is a major chemoattractant for gingival epithelial cells. J. Periodontal Res. 36, 377-383.

    CAS  Google Scholar 

  33. Park, C.H, Schneider, I.C., and Maugh, J.M. (2003). Kinetic analysis of platelet-derived growth factor receptor/phosphoinositide 3-kinase/Akt signalling in fibroblast. J. Biol. Chem. 278, 37064-37072.

    CAS  PubMed  Google Scholar 

  34. Polo, S., Pece, S., and Di Fiore, P.P. (2004). Endocytosis and cancer. Curr. Opin. Cell Biol. 16, 156-161.

    CAS  Google Scholar 

  35. Posner, R.G., Wofsy, C., and Goldstein, B. (1995). The kinetics of bivalent ligand-bivalent receptor aggregation: Ring formation and the breakdown of equivalent site approximation Math. Biosciences. 126, 171-190.

    CAS  Google Scholar 

  36. Reibman, J., S. Meixler, T.C. Lee, L.I. Gold, B.N. Cronstein, K.A. Haines, S.L. Kolasinski, G. Weissmann. (1991). Transforming growth factor β1, a potent chemoattractant for human neutrophils, bypasses classic signal-transduction pathways. Proc. Nat. Acad. Sci. 88, 6805-6809.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sasagawa, S., Y. Ozaki, K. Fujita, S. Kuroda. (2005). Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nature Cell Biol. 7, 365-373.

    CAS  PubMed  Google Scholar 

  38. Sawada, J., A. Itakura, A. Tanaka, T. Furusaka, H. Matsuda. (2000). Nerve growth factor functions as a chemoattractant for mast cells through both mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways. Blood. 95, 2052-2058.

    CAS  PubMed  Google Scholar 

  39. Sawyer, T.K. (1998). Src homology-2 domains: Structure, mechanisms and drug discovery. Biopolymers. 47 243-261.

    CAS  PubMed  Google Scholar 

  40. Schlesinger, J., D. Bar-Sagi. (1995). Activation of Ras and other signalling pathways by tyrosine kinase receptors. In Symposia on Quantitative Biology: Molecular Genetics and Biology. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA).

    Google Scholar 

  41. Schneider, I.C., J.M. Haugh. (2005). Quantitative elucidation of a distinct spatial gradient-sensing mechanism in fibroblasts. J. Cell Biol. 171, 883-892.

    CAS  Google Scholar 

  42. Shibuya, M., Claesson-Welsh, L. (2006). Signal transduction by VEGF receptors in regulation of angiogenesis and lymphoangiogenesis. Exp. Cell Res. 312, 549-560.

    CAS  Google Scholar 

  43. Spiro, P.A., J.S. Parkinson, H.G. Othmer. (1997). A model for excitation and adaptation in bacterial chemotaxis. Proc. Nat. Acad. Sci. 94, 7263-7268.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sulzer, B., De Boer, R.J., and Perelson, A.S. (1996). Cross-linking reconsidered: binding and cross-linking fields and the cellular response. Biophys. J. 70, 1154-1168.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Suzuma, I., Mandai, M., Takagi, H., Suzuma, K., Otani, A., Oh, H., Kobayashi, K., and Honda, Y. (1999). 17 β-estradiol increases VEGF receptor-2 and promotes DNA synthesis in retinal microvascular endothelial cells. Invest. Ophth. Vis. Sci. 40, 2122-2129.

    CAS  Google Scholar 

  46. Teis, D., and Huber, L.A. (2003). The odd couple: signal transduction and endocytosis. Cell. Mol. Life Sci. 60, 2020-2033.

    CAS  Google Scholar 

  47. Terranova, V.P., DiFlorio, R., Lyall, R.M., Hic, S., Friesel, R., and Maciag, T. (1985). Human endothelial cells are chemotactic to endothelial cell growth factor and heparin. J. Cell Biol. 101, 2330-2334.

    CAS  Google Scholar 

  48. Traverse, S., K. Seedorf, H. Patterson, C.J. Marshall, P. Cohen, A. Ullrich. (1994). EGF triggers neuronal differentiation of PC12 cells that overexpress EGF receptor. Curr. Biol. 4, 694-701.

    CAS  PubMed  Google Scholar 

  49. Tyson, J.J., Chen, K.C., and Novak, B. (2003). Sniffers, buzzers, toggles and blinkers: dynamics and signalling pathways in the cell. Curr. Opin. Cell Biol. 15, 221-231.

    CAS  Google Scholar 

  50. Van Kampen, N. (1992). Stochastic processes in physics and chemistry. North-Holland, Amsterdam.

    Google Scholar 

  51. Vaudry, D., P.J.S. Stork, P. Lazarovici, L.E. Eiden. (2002). Signalling pathways for PC12 cell differentiation: making the right connections. Science. 296, 1648-1649.

    CAS  PubMed  Google Scholar 

  52. Vilar, J.M.G., Jansen, R., and Sander, C. (2006). Signal processing in the TGF-β superfamily ligand receptor network. PLOS Comput. Biol. 2, 36-45.

    CAS  Google Scholar 

  53. Wiley, H.S., J.J. Herbst, B.J. Walsh, D.A. Lauffenburger, M.G. Rosenfeld. (1991). The role of receptor tyrosine kinase activity in endocytosis, compartmentation and down-regulation of the epidermal growth factor receptor. J. Biol. Chem. 266, 11083-11094.

    CAS  PubMed  Google Scholar 

  54. Woolf, P.J., and Linderman, J.J. (2004). An algebra of dimerisation and its implications for G-protein coupled receptor. J. theor. Biol. 229, 157-168.

    CAS  PubMed  Google Scholar 

  55. Yaka, R., A. Gamliel, D. Gurwitz, R. Stein. (1998). NGF induces transient but not sustained activation of ERK in PC12 mutant cells incapable of differentiating. J. Cell. Biochem. 70, 425-432.

    CAS  PubMed  Google Scholar 

  56. Yi, T.-M., Y. Huang, M.I. Simon, J. Doyle. (2000). Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Nat. Acad. Sci. 97, 4649-4653.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ti Zhang, Hui-Chuan Sun, Yang Xu, Ke-Zhi Zhang, Lu Wang, Lun-Xiu Qin, Wei-Zhong Wu, Yin-Kun Liu, Sheng-Long Ye, and Zhao-You Tang. (2005). Overexpression of PDGF Receptor α in endothelial cells of hepatocellular carcinoma associated with metastatic potential. Clin Cancer Res. 11, 8557-8563.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás Alarcón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Alarcón, T., Page, K.M. (2012). Mathematical Modeling of the VEGF Receptor. In: Jackson, T.L. (eds) Modeling Tumor Vasculature. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0052-3_1

Download citation

Publish with us

Policies and ethics