Skip to main content

Lymphocryptoviruses: EBV and Its Role in Human Cancer

  • Chapter
  • First Online:
Cancer Associated Viruses

Part of the book series: Current Cancer Research ((CUCR))

  • 1277 Accesses

Abstract

Lymphocryptoviruses (LCVs) are gamma 1-herpesviruses well known for infecting Old-World primates. They display a biphasic life cycle usually with a lifelong persistence, which is typically asymptomatic in their host, and are capable of inducing malignancies. Epstein–Barr virus (EBV) is the most well-studied LCV and is the only member known to cause infection in humans. EBV is the causative agent of infectious mononucleosis and is associated with a number of human malignancies including, Burkitt’s lymphoma (BL), Hodgkin’s disease (HD), nasopharyngeal carcinoma (NPC), and posttransplant lymphoproliferative diseases (PTLD). Interestingly, many of the Old-World primates are known to have the pathological equivalents of these diseases associated with respective LCVs. The EBV genome provides the genetic validation for similarities between EBV infection in human and LCV infections of Old-World primates. Here, we discuss the molecular aspects of host–pathogen interaction in regard to EBV-induced diseases with a particular focus on tumorigenesis, as a representative of the general pathologies associated with LCV-induced malignancies. The role of various EBV proteins in establishment of infection, persistence, and tumorigenesis, as well as the numerous host-signaling pathways targeted by the viral molecules for carrying out these phenomena are explored. Furthermore, the available preferences for diagnosis and treatment modalities for EBV-induced pathologies are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann M (2006) Pathogenesis of gammaherpesvirus infections. Vet Microbiol 113:211–222

    PubMed  CAS  Google Scholar 

  • Allan GJ, Inman GJ, Parker BD, Rowe DT, Farrell PJ (1992) Cell growth effects of Epstein–Barr virus leader protein. J Gen Virol 73(Pt 6):1547–1551

    PubMed  CAS  Google Scholar 

  • Allday MJ (2009) How does Epstein–Barr virus (EBV) complement the activation of Myc in the pathogenesis of Burkitt’s lymphoma? Semin Cancer Biol 19:366–376

    PubMed  CAS  Google Scholar 

  • Allday MJ, Farrell PJ (1994) Epstein–Barr virus nuclear antigen EBNA3C/6 expression maintains the level of latent membrane protein 1 in G1-arrested cells. J Virol 68:3491–3498

    PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas S, Matsuno K, Fortini ME (1995) Notch signaling. Science 268:225–232

    PubMed  CAS  Google Scholar 

  • Aster JC, Pear WS, Blacklow SC (2008) Notch signaling in leukemia. Annu Rev Pathol 3:587–613

    PubMed  CAS  Google Scholar 

  • Baer R et al (1984) DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature 310:207–211

    PubMed  CAS  Google Scholar 

  • Baichwal VR, Sugden B (1988) Transformation of Balb 3T3 cells by the BNLF-1 gene of Epstein–Barr virus. Oncogene 2:461–467

    PubMed  CAS  Google Scholar 

  • Basseres DS, Baldwin AS (2006) Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 25:6817–6830

    PubMed  CAS  Google Scholar 

  • Bodescot M, Brison O, Perricaudet M (1986) An Epstein–Barr virus transcription unit is at least 84 kilobases long. Nucleic Acids Res 14:2611–2620

    PubMed  CAS  Google Scholar 

  • Borggrefe T, Oswald F (2009) The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci 66:1631–1646

    PubMed  CAS  Google Scholar 

  • Bornkamm GW, Hammerschmidt W (2001) Molecular virology of Epstein–Barr virus. Philos Trans R Soc Lond B Biol Sci 356:437–459

    PubMed  CAS  Google Scholar 

  • Brunstein CG et al (2006) Marked increased risk of Epstein–Barr virus-related complications with the addition of antithymocyte globulin to a nonmyeloablative conditioning prior to unrelated umbilical cord blood transplantation. Blood 108:2874–2880

    PubMed  CAS  Google Scholar 

  • Caldwell RG, Wilson JB, Anderson SJ, Longnecker R (1998) Epstein–Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9:405–411

    PubMed  CAS  Google Scholar 

  • Callahan J, Aster J, Sklar J, Kieff E, Robertson ES (2000) Intracellular forms of human NOTCH1 interact at distinctly different levels with RBP-jkappa in human B and T cells. Leukemia 14:84–92

    PubMed  CAS  Google Scholar 

  • Carville A, Mansfield KG (2008) Comparative pathobiology of macaque lymphocryptoviruses. Comp Med 58:57–67

    PubMed  CAS  Google Scholar 

  • Chen SY, Lu J, Shih YC, Tsai CH (2002) Epstein–Barr virus latent membrane protein 2A regulates c-Jun protein through extracellular signal-regulated kinase. J Virol 76:9556–9561

    PubMed  CAS  Google Scholar 

  • Choudhuri T, Verma SC, Lan K, Robertson ES (2006) Expression of alpha V integrin is modulated by Epstein–Barr virus nuclear antigen 3C and the metastasis suppressor Nm23-H1 through interaction with the GATA-1 and Sp1 transcription factors. Virology 351:58–72

    PubMed  CAS  Google Scholar 

  • Cohen JI, Wang F, Kieff E (1991) Epstein–Barr virus nuclear protein 2 mutations define essential domains for transformation and transactivation. J Virol 65:2545–2554

    PubMed  CAS  Google Scholar 

  • Cotter MA 2nd, Robertson ES (2000) Modulation of histone acetyltransferase activity through interaction of Epstein–Barr nuclear antigen 3C with prothymosin alpha. Mol Cell Biol 20:5722–5735

    PubMed  CAS  Google Scholar 

  • Damania B, Jung JU (2001) Comparative analysis of the transforming mechanisms of Epstein–Barr virus, Kaposi’s sarcoma-associated herpesvirus, and Herpesvirus saimiri. Adv Cancer Res 80:51–82

    PubMed  CAS  Google Scholar 

  • Dantuma NP, Masucci MG (2003) The ubiquitin/proteasome system in Epstein–Barr virus latency and associated malignancies. Semin Cancer Biol 13:69–76

    PubMed  CAS  Google Scholar 

  • Dawson CW, Tramountanis G, Eliopoulos AG, Young LS (2003) Epstein–Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodeling. J Biol Chem 278:3694–3704

    PubMed  CAS  Google Scholar 

  • de Oliveira DE, Ballon G, Cesarman E (2010) NF-kappaB signaling modulation by EBV and KSHV. Trends Microbiol 18:248–257

    PubMed  Google Scholar 

  • Decaussin G, Sbih-Lammali F, de Turenne-Tessier M, Bouguermouh A, Ooka T (2000) Expression of BARF1 gene encoded by Epstein–Barr virus in nasopharyngeal carcinoma biopsies. Cancer Res 60:5584–5588

    PubMed  CAS  Google Scholar 

  • Deng Z et al (2003) The CBP bromodomain and nucleosome targeting are required for Zta-directed nucleosome acetylation and transcription activation. Mol Cell Biol 23:2633–2644

    PubMed  CAS  Google Scholar 

  • Devergne O, Cahir McFarland ED, Mosialos G, Izumi KM, Ware CF, Kieff E (1998) Role of the TRAF binding site and NF-kappaB activation in Epstein–Barr virus latent membrane protein 1-induced cell gene expression. J Virol 72:7900–7908

    PubMed  CAS  Google Scholar 

  • Devergne O et al (1996) Association of TRAF1, TRAF2, and TRAF3 with an Epstein–Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation. Mol Cell Biol 16:7098–7108

    PubMed  CAS  Google Scholar 

  • Dolyniuk M, Pritchett R, Kieff E (1976a) Proteins of Epstein–Barr virus. I. Analysis of the polypeptides of purified enveloped Epstein–Barr virus. J Virol 17:935–949

    PubMed  CAS  Google Scholar 

  • Dolyniuk M, Wolff E, Kieff E (1976b) Proteins of Epstein–Barr Virus. II. Electrophoretic analysis of the polypeptides of the nucleocapsid and the glucosamine- and polysaccharide-containing components of enveloped virus. J Virol 18:289–297

    PubMed  CAS  Google Scholar 

  • Ehlers B et al (2010) Lymphocryptovirus phylogeny and the origins of Epstein–Barr virus. J Gen Virol 91:630–642

    PubMed  CAS  Google Scholar 

  • Ekholm SV, Reed SI (2000) Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle. Curr Opin Cell Biol 12:676–684

    PubMed  CAS  Google Scholar 

  • Eliopoulos AG, Blake SM, Floettmann JE, Rowe M, Young LS (1999) Epstein–Barr virus-encoded latent membrane protein 1 activates the JNK pathway through its extreme C terminus via a mechanism involving TRADD and TRAF2. J Virol 73:1023–1035

    PubMed  CAS  Google Scholar 

  • Eliopoulos AG et al (1996) CD40-induced growth inhibition in epithelial cells is mimicked by Epstein–Barr Virus-encoded LMP1: involvement of TRAF3 as a common mediator. Oncogene 13:2243–2254

    PubMed  CAS  Google Scholar 

  • Eliopoulos AG, Young LS (1998) Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein–Barr virus-encoded latent membrane protein 1 (LMP1). Oncogene 16:1731–1742

    PubMed  CAS  Google Scholar 

  • Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1:702–703

    PubMed  CAS  Google Scholar 

  • Epstein MA, Henle G, Achong BG, Barr YM (1965) Morphological and biological studies on a virus in cultured lymphoblasts from Burkitt’s lymphoma. J Exp Med 121:761–770

    PubMed  CAS  Google Scholar 

  • Floettmann JE, Ward K, Rickinson AB, Rowe M (1996) Cytostatic effect of Epstein–Barr virus latent membrane protein-1 analyzed using tetracycline-regulated expression in B cell lines. Virology 223:29–40

    PubMed  CAS  Google Scholar 

  • Fries KL, Miller WE, Raab-Traub N (1999) The A20 protein interacts with the Epstein–Barr virus latent membrane protein 1 (LMP1) and alters the LMP1/TRAF1/TRADD complex. Virology 264:159–166

    PubMed  CAS  Google Scholar 

  • Fruehling S, Longnecker R (1997) The immunoreceptor tyrosine-based activation motif of Epstein–Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology 235:241–251

    PubMed  CAS  Google Scholar 

  • Giles RH, Peters DJ, Breuning MH (1998) Conjunction dysfunction: CBP/p300 in human disease. Trends Genet 14:178–183

    PubMed  CAS  Google Scholar 

  • Gires O et al (1997) Latent membrane protein 1 of Epstein–Barr virus mimics a constitutively active receptor molecule. EMBO J 16:6131–6140

    PubMed  CAS  Google Scholar 

  • Given D, Yee D, Griem K, Kieff E (1979) DNA of Epstein–Barr virus. V. Direct repeats of the ends of Epstein–Barr virus DNA. J Virol 30:852–862

    PubMed  CAS  Google Scholar 

  • Gomez-Marquez J, Rodriguez P (1998) Prothymosin alpha is a chromatin-remodelling protein in mammalian cells. Biochem J 333(Pt 1):1–3

    PubMed  CAS  Google Scholar 

  • Grossman SR, Johannsen E, Tong X, Yalamanchili R, Kieff E (1994) The Epstein–Barr virus nuclear antigen 2 transactivator is directed to response elements by the J kappa recombination signal binding protein. Proc Natl Acad Sci USA 91:7568–7572

    PubMed  CAS  Google Scholar 

  • Grundhoff AT et al (1999) Characterization of DP103, a novel DEAD box protein that binds to the Epstein–Barr virus nuclear proteins EBNA2 and EBNA3C. J Biol Chem 274:19136–19144

    PubMed  CAS  Google Scholar 

  • Gulley ML (2001) Molecular diagnosis of Epstein–Barr virus-related diseases. J Mol Diagn 3:1–10

    PubMed  CAS  Google Scholar 

  • Hammerschmidt W, Sugden B (1989) Genetic analysis of immortalizing functions of Epstein–Barr virus in human B lymphocytes. Nature 340:393–397

    PubMed  CAS  Google Scholar 

  • Harada S, Yalamanchili R, Kieff E (2001) Epstein–Barr virus nuclear protein 2 has at least two N-terminal domains that mediate self-association. J Virol 75:2482–2487

    PubMed  CAS  Google Scholar 

  • Hatzivassiliou E, Miller WE, Raab-Traub N, Kieff E, Mosialos G (1998) A fusion of the EBV latent membrane protein-1 (LMP1) transmembrane domains to the CD40 cytoplasmic domain is similar to LMP1 in constitutive activation of epidermal growth factor receptor expression, nuclear factor-kappa B, and stress-activated protein kinase. J Immunol 160:1116–1121

    PubMed  CAS  Google Scholar 

  • Hayward SD (2004) Viral interactions with the Notch pathway. Semin Cancer Biol 14:387–396

    PubMed  CAS  Google Scholar 

  • Heslop HE (2009) How I treat EBV lymphoproliferation. Blood 114:4002–4008

    PubMed  CAS  Google Scholar 

  • Heslop HE, Brenner MK, Rooney CM (1994) Donor T cells to treat EBV-associated lymphoma. N Engl J Med 331:679–680

    PubMed  CAS  Google Scholar 

  • Heslop HE et al (1996) Long-term restoration of immunity against Epstein–Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med 2:551–555

    PubMed  CAS  Google Scholar 

  • Hitt MM et al (1989) EBV gene expression in an NPC-related tumour. EMBO J 8:2639–2651

    PubMed  CAS  Google Scholar 

  • Hsu H, Xiong J, Goeddel DV (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81:495–504

    PubMed  CAS  Google Scholar 

  • Huen DS, Henderson SA, Croom-Carter D, Rowe M (1995) The Epstein–Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 10:549–560

    PubMed  CAS  Google Scholar 

  • Ikeda M, Ikeda A, Longan LC, Longnecker R (2000) The Epstein–Barr virus latent membrane protein 2A PY motif recruits WW domain-containing ubiquitin-protein ligases. Virology 268:178–191

    PubMed  CAS  Google Scholar 

  • Izumi KM, Cahir McFarland ED, Ting AT, Riley EA, Seed B, Kieff ED (1999) The Epstein–Barr virus oncoprotein latent membrane protein 1 engages the tumor necrosis factor receptor-associated proteins TRADD and receptor-interacting protein (RIP) but does not induce apoptosis or require RIP for NF-kappaB activation. Mol Cell Biol 19:5759–5767

    PubMed  CAS  Google Scholar 

  • Izumi KM, Kaye KM, Kieff ED (1997) The Epstein–Barr virus LMP1 amino acid sequence that engages tumor necrosis factor receptor associated factors is critical for primary B lymphocyte growth transformation. Proc Natl Acad Sci USA 94:1447–1452

    PubMed  CAS  Google Scholar 

  • Izumi KM, Kieff ED (1997) The Epstein–Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc Natl Acad Sci USA 94:12592–12597

    PubMed  CAS  Google Scholar 

  • Jiang WQ, Szekely L, Wendel-Hansen V, Ringertz N, Klein G, Rosen A (1991) Co-localization of the retinoblastoma protein and the Epstein–Barr virus-encoded nuclear antigen EBNA-5. Exp Cell Res 197:314–318

    PubMed  CAS  Google Scholar 

  • Johannsen E et al (2004) Proteins of purified Epstein–Barr virus. Proc Natl Acad Sci USA 101:16286–16291

    PubMed  CAS  Google Scholar 

  • Johnson DG, Walker CL (1999) Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 39:295–312

    PubMed  CAS  Google Scholar 

  • Karran L, Gao Y, Smith PR, Griffin BE (1992) Expression of a family of complementary-strand transcripts in Epstein–Barr virus-infected cells. Proc Natl Acad Sci USA 89:8058–8062

    PubMed  CAS  Google Scholar 

  • Kaschka-Dierich C et al (1976) Intracellular forms of Epstein–Barr virus DNA in human tumour cells in vivo. Nature 260:302–306

    PubMed  CAS  Google Scholar 

  • Kashuba E et al (2010) Epstein–Barr virus-encoded EBNA-5 forms trimolecular protein complexes with MDM2 and p53 and inhibits the transactivating function of p53. Int J Cancer 128:817–825

    Google Scholar 

  • Kaul R, Murakami M, Choudhuri T, Robertson ES (2007) Epstein–Barr virus latent nuclear antigens can induce metastasis in a nude mouse model. J Virol 81:10352–10361

    PubMed  CAS  Google Scholar 

  • Kaul R, Murakami M, Lan K, Choudhuri T, Robertson ES (2009) EBNA3C can modulate the activities of the transcription factor Necdin in association with metastasis suppressor protein Nm23-H1. J Virol 83:4871–4883

    PubMed  CAS  Google Scholar 

  • Kempkes B, Pich D, Zeidler R, Sugden B, Hammerschmidt W (1995) Immortalization of human B lymphocytes by a plasmid containing 71 kilobase pairs of Epstein–Barr virus DNA. J Virol 69:231–238

    PubMed  CAS  Google Scholar 

  • Kieff ED, Rickinson AB (2007) Epstein–Barr Virus and its replication. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Kilger E, Kieser A, Baumann M, Hammerschmidt W (1998) Epstein–Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J 17:1700–1709

    PubMed  CAS  Google Scholar 

  • Kim HR, Jeong JA, Park CH, Lee SK, Lee WK, Jang YS (2002) A role for cell cycle proteins in the serum-starvation resistance of Epstein–Barr virus immortalized B lymphocytes. Biochem Cell Biol 80:407–413

    PubMed  CAS  Google Scholar 

  • Klein G, Klein E, Kashuba E (2010) Interaction of Epstein–Barr virus (EBV) with human B-lymphocytes. Biochem Biophys Res Commun 396:67–73

    PubMed  CAS  Google Scholar 

  • Knight JS, Lan K, Subramanian C, Robertson ES (2003) Epstein–Barr virus nuclear antigen 3C recruits histone deacetylase activity and associates with the corepressors mSin3A and NCoR in human B-cell lines. J Virol 77:4261–4272

    PubMed  CAS  Google Scholar 

  • Knight JS, Robertson ES (2004) Epstein–Barr virus nuclear antigen 3C regulates cyclin A/p27 complexes and enhances cyclin A-dependent kinase activity. J Virol 78:1981–1991

    PubMed  CAS  Google Scholar 

  • Knight JS, Sharma N, Robertson ES (2005a) Epstein–Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase. Proc Natl Acad Sci USA 102:18562–18566

    PubMed  CAS  Google Scholar 

  • Knight JS, Sharma N, Robertson ES (2005b) SCFSkp2 complex targeted by Epstein–Barr virus essential nuclear antigen. Mol Cell Biol 25:1749–1763

    PubMed  CAS  Google Scholar 

  • Kuehnle I et al (2000) CD20 monoclonal antibody (rituximab) for therapy of Epstein–Barr virus lymphoma after hemopoietic stem-cell transplantation. Blood 95:1502–1505

    PubMed  CAS  Google Scholar 

  • Kulwichit W, Edwards RH, Davenport EM, Baskar JF, Godfrey V, Raab-Traub N (1998) Expression of the Epstein–Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci USA 95:11963–11968

    PubMed  CAS  Google Scholar 

  • Kumar P, Saha A, Robertson ES (2010) Epstein–Barr virus hijacks cell-cycle machinery. Microbe 5:251–256

    Google Scholar 

  • Kuppers DA, Lan K, Knight JS, Robertson ES (2005) Regulation of matrix metalloproteinase 9 expression by Epstein–Barr virus nuclear antigen 3C and the suppressor of metastasis Nm23-H1. J Virol 79:9714–9724

    PubMed  CAS  Google Scholar 

  • Kuppers R (2003) B cells under influence: transformation of B cells by Epstein–Barr virus. Nat Rev Immunol 3:801–812

    PubMed  Google Scholar 

  • Kutok JL, Wang F (2006) Spectrum of Epstein–Barr virus-associated diseases. Annu Rev Pathol Mech Dis 1:375–404

    CAS  Google Scholar 

  • Kwiatkowski B, Chen SY, Schubach WH (2004) CKII site in Epstein–Barr virus nuclear protein 2 controls binding to hSNF5/Ini1 and is important for growth transformation. J Virol 78:6067–6072

    PubMed  CAS  Google Scholar 

  • Lacoste V, Lavergne A, de Thoisy B, Pouliquen JF, Gessain A (2010) Genetic diversity and molecular evolution of human and non-human primate Gammaherpesvirinae. Infect Genet Evol 10:1–13

    PubMed  CAS  Google Scholar 

  • Laherty CD, Hu HM, Opipari AW, Wang F, Dixit VM (1992) The Epstein–Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor kappa B. J Biol Chem 267:24157–24160

    PubMed  CAS  Google Scholar 

  • Lambert SL, Martinez OM (2007) Latent membrane protein 1 of EBV activates phosphatidylinositol 3-kinase to induce production of IL-10. J Immunol 179:8225–8234

    PubMed  CAS  Google Scholar 

  • Laux G, Perricaudet M, Farrell PJ (1988) A spliced Epstein–Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO J 7:769–774

    PubMed  CAS  Google Scholar 

  • Leao M, Anderton E, Wade M, Meekings K, Allday MJ (2007) Epstein–Barr virus-induced resistance to drugs that activate the mitotic spindle assembly checkpoint in Burkitt’s lymphoma cells. J Virol 81:248–260

    PubMed  CAS  Google Scholar 

  • Lee CP et al (2007) Epstein–Barr virus BGLF4 kinase induces premature chromosome condensation through activation of condensin and topoisomerase II. J Virol 81:5166–5180

    PubMed  CAS  Google Scholar 

  • Levitskaya J et al (1995) Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375:685–688

    PubMed  CAS  Google Scholar 

  • Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, Masucci MG (1997) Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein–Barr virus nuclear antigen 1. Proc Natl Acad Sci USA 94:12616–12621

    PubMed  CAS  Google Scholar 

  • Lindahl T, Adams A, Bjursell G, Bornkamm GW, Kaschka-Dierich C, Jehn U (1976) Covalently closed circular duplex DNA of Epstein–Barr virus in a human lymphoid cell line. J Mol Biol 102:511–530

    PubMed  CAS  Google Scholar 

  • Lo AK et al (2007) Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci USA 104:16164–16169

    PubMed  CAS  Google Scholar 

  • Longnecker R (2000) Epstein–Barr virus latency: LMP2, a regulator or means for Epstein–Barr virus persistence? Adv Cancer Res 79:175–200

    PubMed  CAS  Google Scholar 

  • Longnecker R, Druker B, Roberts TM, Kieff E (1991) An Epstein–Barr virus protein associated with cell growth transformation interacts with a tyrosine kinase. J Virol 65:3681–3692

    PubMed  CAS  Google Scholar 

  • Longnecker R, Kieff E (1990) A second Epstein–Barr virus membrane protein (LMP2) is expressed in latent infection and colocalizes with LMP1. J Virol 64:2319–2326

    PubMed  CAS  Google Scholar 

  • Mainou BA, Everly DN Jr, Raab-Traub N (2005) Epstein–Barr virus latent membrane protein 1 CTAR1 mediates rodent and human fibroblast transformation through activation of PI3K. Oncogene 24:6917–6924

    PubMed  CAS  Google Scholar 

  • Mannick JB, Cohen JI, Birkenbach M, Marchini A, Kieff E (1991) The Epstein–Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. J Virol 65:6826–6837

    PubMed  CAS  Google Scholar 

  • Marchini A, Tomkinson B, Cohen JI, Kieff E (1991) BHRF1, the Epstein–Barr virus gene with homology to Bc12, is dispensable for B-lymphocyte transformation and virus replication. J Virol 65:5991–6000

    PubMed  CAS  Google Scholar 

  • Merlo A et al (2010) The interplay between Epstein–Barr virus and the immune system: a rationale for adoptive cell therapy of EBV-related disorders. Haematologica 95:1769–1777

    PubMed  CAS  Google Scholar 

  • Miller CL et al (1995) Integral membrane protein 2 of Epstein–Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity 2:155–166

    PubMed  CAS  Google Scholar 

  • Moghaddam A, Rosenzweig M, Lee-Parritz D, Annis B, Johnson RP, Wang F (1997) An animal model for acute and persistent Epstein–Barr virus infection. Science 276:2030–2033

    PubMed  CAS  Google Scholar 

  • Moody CA et al (2005) Modulation of the cell growth regulator mTOR by Epstein–Barr virus-encoded LMP2A. J Virol 79:5499–5506

    PubMed  CAS  Google Scholar 

  • Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291

    PubMed  CAS  Google Scholar 

  • Murai Y et al (2001) Study on the role of G1 cyclins in Epstein–Barr virus-associated human lymphomas maintained in severe combined immune deficiency (SCID) mice. Int J Cancer 92:232–239

    PubMed  CAS  Google Scholar 

  • Nanbo A, Inoue K, Adachi-Takasawa K, Takada K (2002) Epstein–Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt’s lymphoma. EMBO J 21:954–965

    PubMed  CAS  Google Scholar 

  • Nitsche F, Bell A, Rickinson A (1997) Epstein–Barr virus leader protein enhances EBNA-2-mediated transactivation of latent membrane protein 1 expression: a role for the W1W2 repeat domain. J Virol 71:6619–6628

    PubMed  CAS  Google Scholar 

  • Nonkwelo C, Skinner J, Bell A, Rickinson A, Sample J (1996) Transcription start sites downstream of the Epstein–Barr virus (EBV) Fp promoter in early-passage Burkitt lymphoma cells define a fourth promoter for expression of the EBV EBNA-1 protein. J Virol 70:623–627

    PubMed  CAS  Google Scholar 

  • O’Nions J, Allday MJ (2004) Deregulation of the cell cycle by the Epstein–Barr virus. Adv Cancer Res 92:119–186

    PubMed  Google Scholar 

  • O’Reilly RJ, Small TN, Papadopoulos E, Lucas K, Lacerda J, Koulova L (1997) Biology and adoptive cell therapy of Epstein–Barr virus-associated lymphoproliferative disorders in recipients of marrow allografts. Immunol Rev 157:195–216

    PubMed  Google Scholar 

  • Obaya AJ, Sedivy JM (2002) Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci 59:126–142

    PubMed  CAS  Google Scholar 

  • Park CH et al (2004) Latent membrane protein 1 of Epstein–Barr virus plays an important role in the serum starvation resistance of Epstein–Barr virus-immortalized B lymphocytes. J Cell Biochem 91:777–785

    PubMed  CAS  Google Scholar 

  • Paschos K, Smith P, Anderton E, Middeldorp JM, White RE, Allday MJ (2009) Epstein–Barr virus latency in B cells leads to epigenetic repression and CpG methylation of the tumour suppressor gene Bim. PLoS Pathog 5:e1000492

    PubMed  Google Scholar 

  • Portal D, Rosendorff A, Kieff E (2006) Epstein–Barr nuclear antigen leader protein coactivates transcription through interaction with histone deacetylase 4. Proc Natl Acad Sci USA 103:19278–19283

    PubMed  CAS  Google Scholar 

  • Powell JL, Bunin NJ, Callahan C, Aplenc R, Griffin G, Grupp SA (2004) An unexpectedly high incidence of Epstein–Barr virus lymphoproliferative disease after CD34+ selected autologous peripheral blood stem cell transplant in neuroblastoma. Bone Marrow Transplant 33:651–657

    PubMed  CAS  Google Scholar 

  • Raab-Traub N (2009) Epstein–Barr virus transforming proteins: biologic properties and contribution to oncogenesis; DNA tumor viruses. Springer, Heidelberg

    Google Scholar 

  • Radkov SA, Bain M, Farrell PJ, West M, Rowe M, Allday MJ (1997) Epstein–Barr virus EBNA3C represses Cp, the major promoter for EBNA expression, but has no effect on the promoter of the cell gene CD21. J Virol 71:8552–8562

    PubMed  CAS  Google Scholar 

  • Radkov SA et al (1999) Epstein–Barr virus nuclear antigen 3C interacts with histone deacetylase to repress transcription. J Virol 73:5688–5697

    PubMed  CAS  Google Scholar 

  • Rastelli J, Hömig-Hölzel C, Seagal J, Müller W, Hermann AC, Rajewsky K, Zimber-Strobl U (2008) LMP1 signaling can replace CD40 signaling in B cells in vivo and has unique features of inducing class-switch recombination to IgG1. Blood 111:1448–1455

    PubMed  CAS  Google Scholar 

  • Rechsteiner MP et al (2008) Latent membrane protein 2B regulates susceptibility to induction of lytic Epstein–Barr virus infection. J Virol 82:1739–1747

    PubMed  CAS  Google Scholar 

  • Rickinson AB, Kieff E (2001) Epstein–Barr Virus. In: Knipe DM, Howley PM (eds) Fields Virology, 4th edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Rivadeneira ED et al (1999) A novel Epstein–Barr virus-like virus, HV(MNE), in a Macaca nemestrina with mycosis fungoides. Blood 94:2090–2101

    PubMed  CAS  Google Scholar 

  • Rivailler P, Cho YG, Wang F (2002a) Complete genomic sequence of an Epstein–Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J Virol 76:12055–12068

    PubMed  CAS  Google Scholar 

  • Rivailler P, Jiang H, Cho YG, Quink C, Wang F (2002b) Complete nucleotide sequence of the rhesus lymphocryptovirus: genetic validation for an Epstein–Barr virus animal model. J Virol 76:421–426

    PubMed  CAS  Google Scholar 

  • Robertson E, Kieff E (1995) Reducing the complexity of the transforming Epstein–Barr virus genome to 64 kilobase pairs. J Virol 69:983–993

    PubMed  CAS  Google Scholar 

  • Robertson ES (1997) The Epstein–Barr virus EBNA 3 protein family as regulators of transcription. Epstein–Barr Virus Rep 4:143–150

    Google Scholar 

  • Robertson ES, Tomkinson B, Kieff E (1994) An Epstein–Barr virus with a 58-kilobase-pair deletion that includes BARF0 transforms B lymphocytes in vitro. J Virol 68:1449–1458

    PubMed  CAS  Google Scholar 

  • Roizmann B, Desrosiers RC, Fleckenstein B, Lopez C, Minson AC, Studdert MJ (1992) The family Herpesviridae: an update. The Herpesvirus Study Group of the International Committee on Taxonomy of Viruses. Arch Virol 123:425–449

    PubMed  CAS  Google Scholar 

  • Rooney CM et al (1998) Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92:1549–1555

    PubMed  CAS  Google Scholar 

  • Ruf IK, Rhyne PW, Yang C, Cleveland JL, Sample JT (2000) Epstein–Barr virus small RNAs potentiate tumorigenicity of Burkitt lymphoma cells independently of an effect on apoptosis. J Virol 74:10223–10228

    PubMed  CAS  Google Scholar 

  • Saha A, Bamidele A, Murakami M, Robertson ES (2010a) EBNA3C attenuates the function of p53 through interaction with the inhibitor of growth family proteins, 4 and 5. J Virol 85:2079–2088

    PubMed  Google Scholar 

  • Saha A et al (2010b) Epstein–Barr virus nuclear antigen 3C facilitates G1-S transition by stabilizing and enhancing the function of cyclin D1. PLoS Pathog 7(2):e1001275

    Google Scholar 

  • Saha A, Kaul R, Murakami M, Robertson ES (2010c) Tumor viruses and cancer biology: modulating signaling pathways for therapeutic intervention. Cancer Biol Ther 10:961–978

    PubMed  CAS  Google Scholar 

  • Saha A, Murakami M, Kumar P, Bajaj B, Sims K, Robertson ES (2009) Epstein–Barr virus nuclear antigen 3C augments Mdm2-mediated p53 ubiquitination and degradation by deubiquitinating Mdm2. J Virol 83:4652–4669

    PubMed  CAS  Google Scholar 

  • Sakai T et al (1998) Functional replacement of the intracellular region of the Notch1 receptor by Epstein–Barr virus nuclear antigen 2. J Virol 72:6034–6039

    PubMed  CAS  Google Scholar 

  • Sandberg M, Hammerschmidt W, Sugden B (1997) Characterization of LMP-1’s association with TRAF1, TRAF2, and TRAF3. J Virol 71:4649–4656

    PubMed  CAS  Google Scholar 

  • Schmidtko J et al (2002) Posttransplant lymphoproliferative disorder associated with an Epstein–Barr-related virus in cynomolgus monkeys. Transplantation 73:1431–1439

    PubMed  Google Scholar 

  • Sheng W, Decaussin G, Sumner S, Ooka T (2001) N-terminal domain of BARF1 gene encoded by Epstein–Barr virus is essential for malignant transformation of rodent fibroblasts and activation of BCL-2. Oncogene 20:1176–1185

    PubMed  CAS  Google Scholar 

  • Shiama N (1997) The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol 7:230–236

    PubMed  CAS  Google Scholar 

  • Silins SL, Sculley TB (1994) Modulation of vimentin, the CD40 activation antigen and Burkitt’s lymphoma antigen (CD77) by the Epstein–Barr virus nuclear antigen EBNA-4. Virology 202:16–24

    PubMed  CAS  Google Scholar 

  • Smith PR et al (2000) Structure and coding content of CST (BART) family RNAs of Epstein–Barr virus. J Virol 74:3082–3092

    PubMed  CAS  Google Scholar 

  • Straathof KC, Bollard CM, Rooney CM, Heslop HE (2003) Immunotherapy for Epstein–Barr virus-associated cancers in children. Oncologist 8:83–98

    PubMed  CAS  Google Scholar 

  • Subramanian C, Cotter MA 2nd, Robertson ES (2001) Epstein–Barr virus nuclear protein EBNA-3C interacts with the human metastatic suppressor Nm23-H1: a molecular link to cancer metastasis. Nat Med 7:350–355

    PubMed  CAS  Google Scholar 

  • Suzan F, Ammor M, Ribrag V (2001) Fatal reactivation of cytomegalovirus infection after use of rituximab for a post-transplantation lymphoproliferative disorder. N Engl J Med 345:1000

    PubMed  CAS  Google Scholar 

  • Szekely L, Selivanova G, Magnusson KP, Klein G, Wiman KG (1993) EBNA-5, an Epstein–Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci USA 90:5455–5459

    PubMed  CAS  Google Scholar 

  • Takada K, Nanbo A (2001) The role of EBERs in oncogenesis. Semin Cancer Biol 11:461–467

    PubMed  CAS  Google Scholar 

  • Takeshita H et al (1999) Matrix metalloproteinase 9 expression is induced by Epstein–Barr virus latent membrane protein 1 C-terminal activation regions 1 and 2. J Virol 73:5548–5555

    PubMed  CAS  Google Scholar 

  • Tong X, Drapkin R, Reinberg D, Kieff E (1995a) The 62- and 80-kDa subunits of transcription factor IIH mediate the interaction with Epstein–Barr virus nuclear protein 2. Proc Natl Acad Sci USA 92:3259–3263

    PubMed  CAS  Google Scholar 

  • Tong X, Drapkin R, Yalamanchili R, Mosialos G, Kieff E (1995b) The Epstein–Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol Cell Biol 15:4735–4744

    PubMed  CAS  Google Scholar 

  • Tong X, Wang F, Thut CJ, Kieff E (1995c) The Epstein–Barr virus nuclear protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70 but not with TATA-binding protein. J Virol 69:585–588

    PubMed  CAS  Google Scholar 

  • Tsai DE et al (2008) EBV PCR in the diagnosis and monitoring of posttransplant lymphoproliferative disorder: results of a two-arm prospective trial. Am J Transplant 8:1016–1024

    PubMed  CAS  Google Scholar 

  • Uchida J et al (1999) Mimicry of CD40 signals by Epstein–Barr virus LMP1 in B lymphocyte responses. Science 286:300–303

    PubMed  CAS  Google Scholar 

  • Valentine R et al (2010) Epstein–Barr virus-encoded EBNA1 inhibits the canonical NF-kappaB pathway in carcinoma cells by inhibiting IKK phosphorylation. Mol Cancer 9:1

    PubMed  Google Scholar 

  • van Esser JW et al (2002) Prevention of Epstein–Barr virus-lymphoproliferative disease by molecular monitoring and preemptive rituximab in high-risk patients after allogeneic stem cell transplantation. Blood 99:4364–4369

    PubMed  Google Scholar 

  • Wang D, Liebowitz D, Kieff E (1985) An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43:831–840

    PubMed  CAS  Google Scholar 

  • Wang D et al (1988) Epstein–Barr virus latent infection membrane protein alters the human B-lymphocyte phenotype: deletion of the amino terminus abolishes activity. J Virol 62:4173–4184

    PubMed  CAS  Google Scholar 

  • Wang L, Grossman SR, Kieff E (2000) Epstein–Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proc Natl Acad Sci USA 97:430–435

    PubMed  CAS  Google Scholar 

  • Wang Z et al (2010) STAT3 activation induced by Epstein–Barr virus latent membrane protein1 causes vascular endothelial growth factor expression and cellular invasiveness via JAK3 and ERK signaling. Eur J Cancer 46:2996–3006

    PubMed  CAS  Google Scholar 

  • Wei H, Zhou MM (2010) Viral-encoded enzymes that target host chromatin functions. Biochim Biophys Acta 1799:296–301

    PubMed  CAS  Google Scholar 

  • Werneburg BG, Zoog SJ, Dang TT, Kehry MR, Crute JJ (2001) Molecular characterization of CD40 signaling intermediates. J Biol Chem 276:43334–43342

    PubMed  CAS  Google Scholar 

  • Wilson JB, Bell JL, Levine AJ (1996) Expression of Epstein–Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J 15:3117–3126

    PubMed  CAS  Google Scholar 

  • Wu DY, Kalpana GV, Goff SP, Schubach WH (1996) Epstein–Barr virus nuclear protein 2 (EBNA2) binds to a component of the human SNF-SWI complex, hSNF5/Ini1. J Virol 70:6020–6028

    PubMed  CAS  Google Scholar 

  • Wu DY, Krumm A, Schubach WH (2000) Promoter-specific targeting of human SWI-SNF complex by Epstein–Barr virus nuclear protein 2. J Virol 74:8893–8903

    PubMed  CAS  Google Scholar 

  • Yenamandra SP et al (2010) Epstein–Barr virus encoded EBNA-3 binds to vitamin D receptor and blocks activation of its target genes. Cell Mol Life Sci 67:4249–4256

    PubMed  CAS  Google Scholar 

  • Yi F et al (2009) Epstein–Barr virus nuclear antigen 3C targets p53 and modulates its transcriptional and apoptotic activities. Virology 388:236–247

    PubMed  CAS  Google Scholar 

  • Young LS, Murray PG (2003) Epstein–Barr virus and oncogenesis: from latent genes to tumours. Oncogene 22:5108–5121

    PubMed  CAS  Google Scholar 

  • Young LS, Rickinson AB (2004) Epstein–Barr virus: 40 years on. Nat Rev Cancer 4:757–768

    PubMed  CAS  Google Scholar 

  • Zheng H, Li LL, Hu DS, Deng XY, Cao Y (2007) Role of Epstein–Barr virus encoded latent membrane protein 1 in the carcinogenesis of nasopharyngeal carcinoma. Cell Mol Immunol 4:185–196

    PubMed  CAS  Google Scholar 

  • zur Hausen A, Brink AA, Craanen ME, Middeldorp JM, Meijer CJ, van den Brule AJ (2000) Unique transcription pattern of Epstein–Barr virus (EBV) in EBV-carrying gastric adenocarcinomas: expression of the transforming BARF1 gene. Cancer Res 60:2745–2748

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erle S. Robertson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Upadhyay, S.K., Jha, H.C., Saha, A., Robertson, E.S. (2012). Lymphocryptoviruses: EBV and Its Role in Human Cancer. In: Robertson, E. (eds) Cancer Associated Viruses. Current Cancer Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0016-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0016-5_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9999-3

  • Online ISBN: 978-1-4614-0016-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics