Skip to main content

Herpesviruses and Cancer

  • Chapter
  • First Online:
Cancer Associated Viruses

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Herpesviruses are a family of large DNA viruses. They are extremely successful pathogens that have adapted to latently infect and coexist with the host throughout the host’s lifetime. Because of their large coding capacity, these viruses are able to encode a wide variety of viral proteins and regulatory RNAs that impinge on many cellular proteins and critical pathways to the advantage of the virus. Processes important for growth and cell division can be regulated by viral proteins, and under certain circumstances this can contribute to malignant transformation and cancer development. This chapter gives an overview of herpesviruses and cancer. First, the spectrum of animal herpesviruses that are associated with cancer is given. Next, the two human herpesviruses associated with cancer, Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), are reviewed. Epstein-Barr virus was the first virus to be associated with a human cancer, Burkitt’s lymphoma. EBV is also associated with nasopharyngeal carcinoma, Hodgkin’s lymphoma, gastric cancer, and other malignancies. The current models of how EBV is thought to contribute to these various cancers are presented. KSHV, which was identified in Kaposi’s sarcoma, is the most recently discovered human herpesvirus. KSHV is also present in primary effusion lymphoma (PEL) and multicentric castleman’s disease. The role of KSHV and the viral proteins in the pathogenesis of these diseases is also reviewed in this chapter. The current animal models of EBV- and KSHV-related cancers are also reviewed briefly. Finally, the role of Marek’s disease virus to the development of cancer in birds is reviewed. The goal of this chapter is to give a general overview of the contributions of herpesviruses to the development of cancer that is further developed in other chapters of this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ablashi DV, Chatlynne LG, Whitman JE Jr, Cesarman E (2002) Spectrum of Kaposi’s sarcoma-associated herpesvirus, or human herpesvirus 8, diseases. Clin Microbiol Rev 15:439–464

    Article  PubMed  Google Scholar 

  • Akula SM, Wang FZ, Vieira J, Chandran B (2001) Human herpesvirus 8 interaction with target cells involves heparan sulfate. Virology 282:245–255

    Article  PubMed  CAS  Google Scholar 

  • Ambinder RF (2001) Epstein-Barr virus associated lymphoproliferations in the AIDS setting. Eur J Cancer 37:1209–1216

    Article  PubMed  CAS  Google Scholar 

  • An J, Sun Y, Sun R, Rettig MB (2003) Kaposi’s sarcoma-associated herpesvirus encoded vFLIP induces cellular IL-6 expression: the role of the NF-kappaB and JNK/AP1 pathways. Oncogene 22:3371–3385

    Article  PubMed  CAS  Google Scholar 

  • An J, Sun Y, Fisher M, Rettig MB (2004) Antitumor effects of bortezomib (PS-341) on primary effusion lymphomas. Leukemia 18:1699–1704

    Article  PubMed  CAS  Google Scholar 

  • Anagnostopoulos I, Herbst H, Niedobitek G, Stein H (1989) Demonstration of monoclonal EBV genomes in Hodgkin’s disease and Ki-1-positive anaplastic large cell lymphoma by combined Southern blot and in situ hybridization. Blood 74:810–816

    PubMed  CAS  Google Scholar 

  • Anderton E, Yee J, Smith P, Crook T, White RE et al (2008) Two Epstein-Barr virus (EBV) oncoproteins cooperate to repress expression of the proapoptotic tumour-suppressor Bim: clues to the pathogenesis of Burkitt’s lymphoma. Oncogene 27:421–433

    Article  PubMed  CAS  Google Scholar 

  • Armstrong AA, Alexander FE, Cartwright R, Angus B, Krajewski AS et al (1998) Epstein-Barr virus and Hodgkin’s disease: further evidence for the three disease hypothesis. Leukemia 12:1272–1276

    Article  PubMed  CAS  Google Scholar 

  • Asou H, Said JW, Yang R, Munker R, Park DJ et al (1998) Mechanisms of growth control of Kaposi’s sarcoma-associated herpes virus-associated primary effusion lymphoma cells. Blood 91:2475–2481

    PubMed  CAS  Google Scholar 

  • Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY et al (1997) Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest 100:2961–2969

    Article  PubMed  CAS  Google Scholar 

  • Bellare P, Ganem D (2009) Regulation of KSHV lytic switch protein expression by a virus-encoded microRNA: an evolutionary adaptation that fine-tunes lytic reactivation. Cell Host Microbe 6:570–575

    Article  PubMed  CAS  Google Scholar 

  • Blauvelt A (2001) Skin diseases associated with human herpesvirus 6, 7, and 8 infection. J Investig Dermatol Symp Proc 6:197–202

    Article  PubMed  CAS  Google Scholar 

  • Bonnet M, Guinebretiere JM, Kremmer E, Grunewald V, Benhamou E et al (1999) Detection of Epstein-Barr virus in invasive breast cancers. J Natl Cancer Inst 91:1376–1381

    Article  PubMed  CAS  Google Scholar 

  • Boshoff C, Weiss RA (1997) Aetiology of Kaposi’s sarcoma: current understanding and implications for therapy. Mol Med Today 3:488–494

    Article  PubMed  CAS  Google Scholar 

  • Boshoff C, Weiss RA (1998) Kaposi’s sarcoma-associated herpesvirus. Adv Cancer Res 75:57–86

    Article  PubMed  CAS  Google Scholar 

  • Boshoff C, Weiss R (2002) AIDS-related malignancies. Nat Rev Cancer 2:373–382

    Article  PubMed  CAS  Google Scholar 

  • Boshoff C, Schulz TF, Kennedy MM, Graham AK, Fisher C et al (1995) Kaposi’s sarcoma-associated herpesvirus infects endothelial and spindle cells. Nat Med 1:1274–1278

    Article  PubMed  CAS  Google Scholar 

  • Boshoff C, Gao SJ, Healy LE, Matthews S, Thomas AJ et al (1998) Establishing a KSHV+ cell line (BCP-1) from peripheral blood and characterizing its growth in Nod/SCID mice. Blood 91:1671–1679

    PubMed  CAS  Google Scholar 

  • Bubman D, Guasparri I, Cesarman E (2007) Deregulation of c-Myc in primary effusion lymphoma by Kaposi’s sarcoma herpesvirus latency-associated nuclear antigen. Oncogene 26:4979–4986

    Article  PubMed  CAS  Google Scholar 

  • Buonaguro FM, Tomesello ML, Buonaguro L, Satriano RA, Ruocco E et al (2003) Kaposi’s sarcoma: aetiopathogenesis, histology and clinical features. J Eur Acad Dermatol Venereol 17:138–154

    Article  PubMed  CAS  Google Scholar 

  • Bureau W, Van Slyke P, Jones J, Han RN, Ward NL et al (2006) Chronic systemic delivery of angiopoietin-2 reveals a possible independent angiogenic effect. Am J Physiol Heart Circ Physiol 291:H948–956

    Article  PubMed  CAS  Google Scholar 

  • Burkitt D (1958) A sarcoma involving the jaws in African children. Br J Surg 46:218–223

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B et al (2005) Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci USA 102:5570–5575

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Schafer A, Lu S, Bilello JP, Desrosiers RC et al (2006) Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2:e23

    Article  PubMed  CAS  Google Scholar 

  • Caldwell RG, Brown RC, Longnecker R (2000) Epstein-Barr virus LMP2A-induced B-cell survival in two unique classes of EmuLMP2A transgenic mice. J Virol 74:1101–1113

    Article  PubMed  CAS  Google Scholar 

  • Capello D, Rossi D, Gaidano G (2005) Post-transplant lymphoproliferative disorders: molecular basis of disease histogenesis and pathogenesis. Hematol Oncol 23:61–67

    Article  PubMed  Google Scholar 

  • Carbone A, Gloghini A (2007) HHV-8-associated lymphoma: state-of-the-art review. Acta Haematol 117:129–131

    Article  PubMed  Google Scholar 

  • Carbone A, Cesarman E, Spina M, Gloghini A, Schulz TF (2009) HIV-associated lymphomas and gamma-herpesviruses. Blood 113:1213–1224

    Article  PubMed  CAS  Google Scholar 

  • Catley MC, Chivers JE, Cambridge LM, Holden N, Slater DM et al (2003) IL-1beta-dependent activation of NF-kappaB mediates PGE2 release via the expression of cyclooxygenase-2 and microsomal prostaglandin E synthase. FEBS Lett 547:75–79

    Article  PubMed  CAS  Google Scholar 

  • Cesarman E, Moore PS, Rao PH, Inghirami G, Knowles DM et al (1995) In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi’s sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood 86:2708–2714

    PubMed  CAS  Google Scholar 

  • Chadburn A, Cesarman E, Nador RG, Liu YF, Knowles DM (1997) Kaposi’s sarcoma-associated herpesvirus sequences in benign lymphoid proliferations not associated with human immunodeficiency virus. Cancer 80:788–797

    Article  PubMed  CAS  Google Scholar 

  • Chandran B (2010) Early events in Kaposi’s sarcoma-associated herpesvirus infection of target cells. J Virol 84:2188–2199

    Article  PubMed  CAS  Google Scholar 

  • Chandriani S, Ganem D (2010) Array-based transcript profiling and limiting-dilution RT-PCR analysis identify additional latent genes in KSHV. J Virol 84:5565–5573

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Wachtman LM, Pearson CB, Lee JS, Lee HR et al (2009) Non-human primate model of Kaposi’s sarcoma-associated herpesvirus infection. PLoS Pathog 5:e1000606

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, Moore PS (1996) Kaposi’s Sarcoma (KS)-associated herpesvirus and its role in KS. Infect Agents Dis 5:215–222

    PubMed  CAS  Google Scholar 

  • Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J et al (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266:1865–1869

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, Ziegler J, Wabinga H, Katangole-Mbidde E, Boshoff C et al (1996) Kaposi’s sarcoma-associated herpesvirus and Kaposi’s sarcoma in Africa. Uganda Kaposi’s Sarcoma Study Group. Arch Intern Med 156:202–204

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary PM, Jasmin A, Eby MT, Hood L (1999) Modulation of the NF-kappa B pathway by virally encoded death effector domains-containing proteins. Oncogene 18:5738–5746

    Article  PubMed  CAS  Google Scholar 

  • Chene A, Donati D, Guerreiro-Cacais AO, Levitsky V, Chen Q et al (2007) A molecular link between malaria and Epstein-Barr virus reactivation. PLoS Pathog 3:e80

    Article  PubMed  CAS  Google Scholar 

  • Cherney BW, Bhatia KG, Sgadari C, Gutierrez MI, Mostowski H et al (1997) Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt’s lymphoma cells. Cancer Res 57:2508–2515

    PubMed  CAS  Google Scholar 

  • Cheung AK, Lung HL, Ko JM, Cheng Y, Stanbridge EJ et al (2009) Chromosome 14 transfer and functional studies identify a candidate tumor suppressor gene, mirror image polydactyly 1, in nasopharyngeal carcinoma. Proc Natl Acad Sci USA 106:14478–14483

    Article  PubMed  CAS  Google Scholar 

  • Chugh P, Matta H, Schamus S, Zachariah S, Kumar A et al (2005) Constitutive NF-kappaB activation, normal Fas-induced apoptosis, and increased incidence of lymphoma in human herpes virus 8 K13 transgenic mice. Proc Natl Acad Sci USA 102:12885–12890

    Article  PubMed  CAS  Google Scholar 

  • Clark SC, Kamen R (1987) The human hematopoietic colony-stimulating factors. Science 236:1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Cotter MA 2nd, Robertson ES (1999) The latency-associated nuclear antigen tethers the Kaposi’s sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology 264:254–264

    Article  PubMed  CAS  Google Scholar 

  • Curran JA, Laverty FS, Campbell D, Macdiarmid J, Wilson JB (2001) Epstein-Barr virus encoded latent membrane protein-1 induces epithelial cell proliferation and sensitizes transgenic mice to chemical carcinogenesis. Cancer Res 61:6730–6738

    PubMed  CAS  Google Scholar 

  • Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC et al (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79:7824–7827

    Article  PubMed  CAS  Google Scholar 

  • Deacon EM, Pallesen G, Niedobitek G, Crocker J, Brooks L et al (1993) Epstein-Barr virus and Hodgkin’s disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med 177:339–349

    Article  PubMed  CAS  Google Scholar 

  • Dittmer D, Stoddart C, Renne R, Linquist-Stepps V, Moreno ME et al (1999) Experimental transmission of Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) to SCID-hu Thy/Liv mice. J Exp Med 190:1857–1868

    Article  PubMed  CAS  Google Scholar 

  • Djerbi M, Screpanti V, Catrina AI, Bogen B, Biberfeld P et al (1999) The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J Exp Med 190:1025–1032

    Article  PubMed  CAS  Google Scholar 

  • Dupin N, Fisher C, Kellam P, Ariad S, Tulliez M et al (1999) Distribution of human herpesvirus-8 latently infected cells in Kaposi’s sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma. Proc Natl Acad Sci USA 96:4546–4551

    Article  PubMed  CAS  Google Scholar 

  • Durkop H, Foss HD, Demel G, Klotzbach H, Hahn C et al (1999) Tumor necrosis factor receptor-associated factor 1 is overexpressed in Reed-Sternberg cells of Hodgkin’s disease and Epstein-Barr virus-transformed lymphoid cells. Blood 93:617–623

    PubMed  CAS  Google Scholar 

  • Edwards RH, Sitki-Green D, Moore DT, Raab-Traub N (2004) Potential selection of LMP1 variants in nasopharyngeal carcinoma. J Virol 78:868–881

    Article  PubMed  CAS  Google Scholar 

  • Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL (1999) Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13:2658–2669

    Article  PubMed  CAS  Google Scholar 

  • Ensoli B, Sturzl M (1998) Kaposi’s sarcoma: a result of the interplay among inflammatory cytokines, angiogenic factors and viral agents. Cytokine Growth Factor Rev 9:63–83

    Article  PubMed  CAS  Google Scholar 

  • Ensoli B, Barillari G, Gallo RC (1992) Cytokines and growth factors in the pathogenesis of AIDS-associated Kaposi’s sarcoma. Immunol Rev 127:147–155

    Article  PubMed  CAS  Google Scholar 

  • Ensoli B, Markham P, Kao V, Barillari G, Fiorelli V et al (1994) Block of AIDS-Kaposi’s sarcoma (KS) cell growth, angiogenesis, and lesion formation in nude mice by antisense oligonucleotide targeting basic fibroblast growth factor. A novel strategy for the therapy of KS. J Clin Invest 94:1736–1746

    Article  PubMed  CAS  Google Scholar 

  • Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1:702–703

    Article  PubMed  CAS  Google Scholar 

  • Epstein MA, Barr YM, Achong BG (1966a) Preliminary observations on new lymphoblast strains (EB4, EB5) from Burkitt tumours in a British and a Ugandan patient. Br J Cancer 20:475–479

    Article  PubMed  CAS  Google Scholar 

  • Epstein MA, Achong BG, Barr YM, Zajac B, Henle G et al (1966b) Morphological and virological investigations on cultured Burkitt tumor lymphoblasts (strain Raji). J Natl Cancer Inst 37:547–559

    PubMed  CAS  Google Scholar 

  • Faris M, Ensoli B, Kokot N, Nel AE (1998) Inflammatory cytokines induce the expression of basic fibroblast growth factor (bFGF) isoforms required for the growth of Kaposi’s sarcoma and endothelial cells through the activation of AP-1 response elements in the bFGF promoter. AIDS 12:19–27

    Article  PubMed  CAS  Google Scholar 

  • Fiorelli V, Gendelman R, Sirianni MC, Chang HK, Colombini S et al (1998) gamma-Interferon produced by CD8+ T cells infiltrating Kaposi’s sarcoma induces spindle cells with angiogenic phenotype and synergy with human immunodeficiency virus-1 Tat protein: an immune response to human herpesvirus-8 infection? Blood 91:956–967

    PubMed  CAS  Google Scholar 

  • Fujimuro M, Wu FY, ApRhys C, Kajumbula H, Young DB et al (2003) A novel viral mechanism for dysregulation of beta-catenin in Kaposi’s sarcoma-associated herpesvirus latency. Nat Med 9:300–306

    Article  PubMed  CAS  Google Scholar 

  • Gaidano G, Cechova K, Chang Y, Moore PS, Knowles DM et al (1996) Establishment of AIDS-related lymphoma cell lines from lymphomatous effusions. Leukemia 10:1237–1240

    PubMed  CAS  Google Scholar 

  • Ganem D, Ziegelbauer J (2008) MicroRNAs of Kaposi’s sarcoma-associated herpes virus. Semin Cancer Biol 18:437–440

    Article  PubMed  CAS  Google Scholar 

  • George Paul A, Sharma-Walia N, Kerur N, White C, Chandran B (2010) Piracy of prostaglandin E2/EP receptor-mediated signaling by Kaposi’s sarcoma-associated herpes virus (HHV-8) for latency gene expression: strategy of a successful pathogen. Cancer Res 70:3697–3708

    Article  PubMed  CAS  Google Scholar 

  • Godfrey A, Anderson J, Papanastasiou A, Takeuchi Y, Boshoff C (2005) Inhibiting primary effusion lymphoma by lentiviral vectors encoding short hairpin RNA. Blood 105:2510–2518

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk S, Rooney CM, Heslop HE (2005) Post-transplant lymphoproliferative disorders. Annu Rev Med 56:29–44

    Article  PubMed  CAS  Google Scholar 

  • Gottwein E, Cullen BR (2010) A human herpesvirus microRNA inhibits p21 expression and attenuates p21-mediated cell cycle arrest. J Virol 84:5229–5237

    Article  PubMed  CAS  Google Scholar 

  • Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros WH et al (2007) A viral microRNA functions as an orthologue of cellular miR-155. Nature 450:1096–1099

    Article  PubMed  CAS  Google Scholar 

  • Grisotto MG, Garin A, Martin AP, Jensen KK, Chan P et al (2006) The human herpesvirus 8 chemokine receptor vGPCR triggers autonomous proliferation of endothelial cells. J Clin Invest 116:1264–1273

    Article  PubMed  CAS  Google Scholar 

  • Gruhne B, Sompallae R, Marescotti D, Kamranvar SA, Gastaldello S et al (2009) The Epstein-Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc Natl Acad Sci USA 106:2313–2318

    Article  PubMed  CAS  Google Scholar 

  • Guasparri I, Wu H, Cesarman E (2006) The KSHV oncoprotein vFLIP contains a TRAF-interacting motif and requires TRAF2 and TRAF3 for signalling. EMBO Rep 7:114–119

    Article  PubMed  CAS  Google Scholar 

  • Gulley ML, Chen CL, Raab-Traub N (1993) Epstein-Barr virus-related lymphomagenesis in a child with Wiskott-Aldrich syndrome. Hematol Oncol 11:139–145

    Article  PubMed  CAS  Google Scholar 

  • Guo HG, Pati S, Sadowska M, Charurat M, Reitz M (2004) Tumorigenesis by human herpesvirus 8 vGPCR is accelerated by human immunodeficiency virus type 1 Tat. J Virol 78:9336–9342

    Article  PubMed  CAS  Google Scholar 

  • Gutensohn N, Cole P (1980) Epidemiology of Hodgkin’s disease. Semin Oncol 7:92–102

    PubMed  CAS  Google Scholar 

  • Harabuchi Y, Yamanaka N, Kataura A, Imai S, Kinoshita T et al (1990) Epstein-Barr virus in nasal T-cell lymphomas in patients with lethal midline granuloma. Lancet 335:128–130

    Article  PubMed  CAS  Google Scholar 

  • Henle G, Henle W (1976) Epstein-Barr virus-specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. Int J Cancer 17:1–7

    Article  PubMed  CAS  Google Scholar 

  • Henle W, Henle G, Ho HC, Burtin P, Cachin Y et al (1970) Antibodies to Epstein-Barr virus in nasopharyngeal carcinoma, other head and neck neoplasms, and control groups. J Natl Cancer Inst 44:225–231

    PubMed  CAS  Google Scholar 

  • Herbst H, Foss HD, Samol J, Araujo I, Klotzbach H et al (1996) Frequent expression of interleukin-10 by Epstein-Barr virus-harboring tumor cells of Hodgkin’s disease. Blood 87:2918–2929

    PubMed  CAS  Google Scholar 

  • Hinz M, Lemke P, Anagnostopoulos I, Hacker C, Krappmann D et al (2002) Nuclear factor kappaB-dependent gene expression profiling of Hodgkin’s disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med 196:605–617

    Article  PubMed  CAS  Google Scholar 

  • Huang DP, Ho JH, Saw D, Teoh TB (1978) Carcinoma of the nasal and paranasal regions in rats fed Cantonese salted marine fish. IARC Sci Publ(20): 315–328

    Google Scholar 

  • Imai S, Koizumi S, Sugiura M, Tokunaga M, Uemura Y et al (1994) Gastric carcinoma: monoclonal epithelial malignant cells expressing Epstein-Barr virus latent infection protein. Proc Natl Acad Sci USA 91:9131–9135

    Article  PubMed  CAS  Google Scholar 

  • Jenner RG, Maillard K, Cattini N, Weiss RA, Boshoff C et al (2003) Kaposi’s sarcoma-associated herpesvirus-infected primary effusion lymphoma has a plasma cell gene expression profile. Proc Natl Acad Sci USA 100:10399–10404

    Article  PubMed  CAS  Google Scholar 

  • Jensen KK, Manfra DJ, Grisotto MG, Martin AP, Vassileva G et al (2005) The human herpes virus 8-encoded chemokine receptor is required for angioproliferation in a murine model of Kaposi’s sarcoma. J Immunol 174:3686–3694

    PubMed  CAS  Google Scholar 

  • Jones JF, Shurin S, Abramowsky C, Tubbs RR, Sciotto CG et al (1988) T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. N Engl J Med 318:733–741

    Article  PubMed  CAS  Google Scholar 

  • Kafuko GW, Burkitt DP (1970) Burkitt’s lymphoma and malaria. Int J Cancer 6:1–9

    Article  PubMed  CAS  Google Scholar 

  • Kang H, Lieberman PM (2009) Cell cycle control of Kaposi’s sarcoma-associated herpesvirus latency transcription by CTCF-cohesin interactions. J Virol 83:6199–6210

    Article  PubMed  CAS  Google Scholar 

  • Kang MS, Lu H, Yasui T, Sharpe A, Warren H et al (2005) Epstein-Barr virus nuclear antigen 1 does not induce lymphoma in transgenic FVB mice. Proc Natl Acad Sci USA 102:820–825

    Article  PubMed  CAS  Google Scholar 

  • Karcher DS, Alkan S (1997) Human herpesvirus-8-associated body cavity-based lymphoma in human immunodeficiency virus-infected patients: a unique B-cell neoplasm. Hum Pathol 28:801–808

    Article  PubMed  CAS  Google Scholar 

  • Keller SA, Schattner EJ, Cesarman E (2000) Inhibition of NF-kappaB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood 96:2537–2542

    PubMed  CAS  Google Scholar 

  • Keller SA, Hernandez-Hopkins D, Vider J, Ponomarev V, Hyjek E et al (2006) NF-kappaB is essential for the progression of KSHV- and EBV-infected lymphomas in vivo. Blood 107:3295–3302

    Article  PubMed  CAS  Google Scholar 

  • Kelly G, Bell A, Rickinson A (2002) Epstein-Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2. Nat Med 8:1098–1104

    Article  PubMed  CAS  Google Scholar 

  • Kelly GL, Milner AE, Baldwin GS, Bell AI, Rickinson AB (2006) Three restricted forms of Epstein-Barr virus latency counteracting apoptosis in c-myc-expressing Burkitt lymphoma cells. Proc Natl Acad Sci USA 103:14935–14940

    Article  PubMed  CAS  Google Scholar 

  • Kelly GL, Milner AE, Tierney RJ, Croom-Carter DS, Altmann M et al (2005) Epstein-Barr virus nuclear antigen 2 (EBNA2) gene deletion is consistently linked with EBNA3A, -3B, and -3C expression in Burkitt’s lymphoma cells and with increased resistance to apoptosis. J Virol 79:10709–10717

    Article  PubMed  CAS  Google Scholar 

  • Kelly GL, Long HM, Stylianou J, Thomas WA, Leese A et al (2009) An Epstein-Barr virus anti-apoptotic protein constitutively expressed in transformed cells and implicated in burkitt lymphomagenesis: the Wp/BHRF1 link. PLoS Pathog 5:e1000341

    Article  PubMed  CAS  Google Scholar 

  • Kennedy G, Komano J, Sugden B (2003) Epstein-Barr virus provides a survival factor to Burkitt’s lymphomas. Proc Natl Acad Sci USA 100:14269–14274

    Article  PubMed  CAS  Google Scholar 

  • Kikuta H, Taguchi Y, Tomizawa K, Kojima K, Kawamura N et al (1988) Epstein-Barr virus genome-positive T lymphocytes in a boy with chronic active EBV infection associated with Kawasaki-like disease. Nature 333:455–457

    Article  PubMed  CAS  Google Scholar 

  • Klein G, Pearson G, Henle G, Henle W, Diehl V et al (1968) Relation between Epstein– Barr viral and cell membrane immunofluorescence in Burkitt tumor cells. II. Comparison of cells and sera from patients with Burkitt’s lymphoma and infectious mononucleosis. J Exp Med 128:1021–1030

    Article  PubMed  CAS  Google Scholar 

  • Klein U, Gloghini A, Gaidano G, Chadburn A, Cesarman E et al (2003) Gene expression profile analysis of AIDS-related primary effusion lymphoma (PEL) suggests a plasmablastic derivation and identifies PEL-specific transcripts. Blood 101:4115–4121

    Article  PubMed  CAS  Google Scholar 

  • Knecht H, Berger C, McQuain C, Rothenberger S, Bachmann E et al (1999) Latent membrane protein 1 associated signaling pathways are important in tumor cells of Epstein-Barr virus negative Hodgkin’s disease. Oncogene 18:7161–7167

    Article  PubMed  CAS  Google Scholar 

  • Knight JS, Sharma N, Robertson ES (2005) Epstein-Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase. Proc Natl Acad Sci USA 102:18562–18566

    Article  PubMed  CAS  Google Scholar 

  • Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA et al (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1801

    Article  PubMed  CAS  Google Scholar 

  • Komano J, Maruo S, Kurozumi K, Oda T, Takada K (1999) Oncogenic role of Epstein-Barr virus-encoded RNAs in Burkitt’s lymphoma cell line Akata. J Virol 73:9827–9831

    PubMed  CAS  Google Scholar 

  • Kulwichit W, Edwards RH, Davenport EM, Baskar JF, Godfrey V et al (1998) Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci USA 95:11963–11968

    Article  PubMed  CAS  Google Scholar 

  • Lan K, Murakami M, Choudhuri T, Tsai DE, Schuster SJ et al (2008) Detection of Epstein-Barr virus in T-cell prolymphocytic leukemia cells in vitro. J Clin Virol 43:260–265

    Article  PubMed  CAS  Google Scholar 

  • Lei X, Bai Z, Ye F, Xie J, Kim CG et al (2010) Regulation of NF-kappaB inhibitor IkappaBalpha and viral replication by a KSHV microRNA. Nat Cell Biol 12:193–199

    Article  PubMed  CAS  Google Scholar 

  • Lenoir GM, Preud’homme JL, Bernheim A, Berger R (1982) Correlation between immunoglobulin light chain expression and variant translocation in Burkitt’s lymphoma. Nature 298:474–476

    Article  PubMed  CAS  Google Scholar 

  • Levine PH, Ablashi DV, Berard CW, Carbone PP, Waggoner DE et al (1971) Elevated antibody titers to Epstein-Barr virus in Hodgkin’s disease. Cancer 27:416–421

    Article  PubMed  CAS  Google Scholar 

  • Levy JA, Henle G (1966) Indirect immunofluorescence tests with sera from African children and cultured Burkitt lymphoma cells. J Bacteriol 92:275–276

    PubMed  CAS  Google Scholar 

  • Lo KW, Huang DP (2002) Genetic and epigenetic changes in nasopharyngeal carcinoma. Semin Cancer Biol 12:451–462

    Article  PubMed  CAS  Google Scholar 

  • Loffek S, Zigrino P, Steiger J, Kurschat P, Smola H et al (2006) Melanoma cell-derived vascular endothelial growth factor induces endothelial tubulogenesis within fibrin gels by a metalloproteinase-mediated mechanism. Eur J Cell Biol 85:1167–1177

    Article  PubMed  CAS  Google Scholar 

  • Lombardi L, Newcomb EW, Dalla-Favera R (1987) Pathogenesis of Burkitt lymphoma: expression of an activated c-myc oncogene causes the tumorigenic conversion of EBV-infected human B lymphoblasts. Cell 49:161–170

    Article  PubMed  CAS  Google Scholar 

  • MacMahon B (1966) Epidemiology of Hodgkin’s disease. Cancer Res 26:1189–1201

    PubMed  CAS  Google Scholar 

  • Magrath I (1990) The pathogenesis of Burkitt’s lymphoma. Adv Cancer Res 55:133–270

    Article  PubMed  CAS  Google Scholar 

  • Matta H, Surabhi RM, Zhao J, Punj V, Sun Q et al (2007) Induction of spindle cell morphology in human vascular endothelial cells by human herpesvirus 8-encoded viral FLICE inhibitory protein K13. Oncogene 26:1656–1660

    Article  PubMed  CAS  Google Scholar 

  • McClain KL, Leach CT, Jenson HB, Joshi VV, Pollock BH et al (1995) Association of Epstein-Barr virus with leiomyosarcomas in children with AIDS. N Engl J Med 332:12–18

    Article  PubMed  CAS  Google Scholar 

  • McCormick C, Ganem D (2005) The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science 307:739–741

    Article  PubMed  CAS  Google Scholar 

  • Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW et al (2006) Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 12:1316–1322

    Article  PubMed  CAS  Google Scholar 

  • Mesri EA, Cesarman E, Arvanitakis L, Rafii S, Moore MA et al (1996) Human herpesvirus-8/Kaposi’s sarcoma-associated herpesvirus is a new transmissible virus that infects B cells. J Exp Med 183:2385–2390

    Article  PubMed  CAS  Google Scholar 

  • Miles SA, Rezai AR, Salazar-Gonzalez JF, Vander Meyden M, Stevens RH et al (1990) AIDS Kaposi sarcoma-derived cells produce and respond to interleukin 6. Proc Natl Acad Sci USA 87:4068–4072

    Article  PubMed  CAS  Google Scholar 

  • Misztal-Dethloff B, Stepien H, Komorowski J (2004) Effect of leptin on proliferative activity and vascular endothelial growth factor (VEGF) secretion from cultured endothelial cells HECa10 in vitro. Endocr Regul 38:161–166

    PubMed  CAS  Google Scholar 

  • Monini P, Carlini F, Sturzl M, Rimessi P, Superti F et al (1999) Alpha interferon inhibits human herpesvirus 8 (HHV-8) reactivation in primary effusion lymphoma cells and reduces HHV-8 load in cultured peripheral blood mononuclear cells. J Virol 73:4029–4041

    PubMed  CAS  Google Scholar 

  • Montaner S, Sodhi A, Ramsdell AK, Martin D, Hu J et al (2006) The Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor as a therapeutic target for the treatment of Kaposi’s sarcoma. Cancer Res 66:168–174

    Article  PubMed  CAS  Google Scholar 

  • Montaner S, Sodhi A, Molinolo A, Bugge TH, Sawai ET et al (2003) Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi’s sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 3:23–36

    Article  PubMed  CAS  Google Scholar 

  • Moore PS, Kingsley LA, Holmberg SD, Spira T, Gupta P et al (1996a) Kaposi’s sarcoma-associated herpesvirus infection prior to onset of Kaposi’s sarcoma. AIDS 10:175–180

    Article  PubMed  CAS  Google Scholar 

  • Moore PS, Gao SJ, Dominguez G, Cesarman E, Lungu O et al (1996b) Primary characterization of a herpesvirus agent associated with Kaposi’s sarcomae. J Virol 70:549–558

    PubMed  CAS  Google Scholar 

  • Morrison JA, Gulley ML, Pathmanathan R, Raab-Traub N (2004) Differential signaling pathways are activated in the Epstein-Barr virus-associated malignancies nasopharyngeal carcinoma and Hodgkin lymphoma. Cancer Res 64:5251–5260

    Article  PubMed  CAS  Google Scholar 

  • Mosier DE, Gulizia RJ, Baird SM, Wilson DB (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335:256–259

    Article  PubMed  CAS  Google Scholar 

  • Moss J, Vaughan M (2002) Cytohesin-1 in 2001. Arch Biochem Biophys 397:156–161

    Article  PubMed  CAS  Google Scholar 

  • Muralidhar S, Veytsmann G, Chandran B, Ablashi D, Doniger J et al (2000) Characterization of the human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus) oncogene, kaposin (ORF K12). J Clin Virol 16:203–213

    Article  PubMed  CAS  Google Scholar 

  • Muralidhar S, Pumfery AM, Hassani M, Sadaie MR, Kishishita M et al (1998) Identification of kaposin (open reading frame K12) as a human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus) transforming gene. J Virol 72:4980–4988

    PubMed  CAS  Google Scholar 

  • Murray PG, Young LS, Rowe M, Crocker J (1992) Immunohistochemical demonstration of the Epstein-Barr virus-encoded latent membrane protein in paraffin sections of Hodgkin’s disease. J Pathol 166:1–5

    Article  PubMed  CAS  Google Scholar 

  • Murray PG, Flavell JR, Baumforth KR, Toomey SM, Lowe D et al (2001) Expression of the tumour necrosis factor receptor-associated factors 1 and 2 in Hodgkin’s disease. J Pathol 194:158–164

    Article  PubMed  CAS  Google Scholar 

  • Mutlu AD, Cavallin LE, Vincent L, Chiozzini C, Eroles P et al (2007) In vivo-restricted and reversible malignancy induced by human herpesvirus-8 KSHV: a cell and animal model of virally induced Kaposi’s sarcoma. Cancer Cell 11:245–258

    Article  PubMed  CAS  Google Scholar 

  • Nagata H, Konno A, Kimura N, Zhang Y, Kimura M et al (2001) Characterization of novel natural killer (NK)-cell and gammadelta T-cell lines established from primary lesions of nasal T/NK-cell lymphomas associated with the Epstein-Barr virus. Blood 97:708–713

    Article  PubMed  CAS  Google Scholar 

  • Naranatt PP, Krishnan HH, Svojanovsky SR, Bloomer C, Mathur S et al (2004) Host gene induction and transcriptional reprogramming in Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8)-infected endothelial, fibroblast, and B cells: insights into modulation events early during infection. Cancer Res 64:72–84

    Article  PubMed  CAS  Google Scholar 

  • Niedobitek G, Agathanggelou A, Finerty S, Tierney R, Watkins P et al (1994) Latent Epstein-Barr virus infection in cottontop tamarins. A possible model for Epstein-Barr virus infection in humans. Am J Pathol 145:969–978

    PubMed  CAS  Google Scholar 

  • O’Hara AJ, Chugh P, Wang L, Netto EM, Luz E et al (2009) Pre-micro RNA signatures delineate stages of endothelial cell transformation in Kaposi sarcoma. PLoS Pathog 5:e1000389

    Article  PubMed  CAS  Google Scholar 

  • Pallesen G, Hamilton-Dutoit SJ, Zhou X (1993) The association of Epstein-Barr virus (EBV) with T cell lymphoproliferations and Hodgkin’s disease: two new developments in the EBV field. Adv Cancer Res 62:179–239

    Article  PubMed  CAS  Google Scholar 

  • Pallesen G, Hamilton-Dutoit SJ, Rowe M, Young LS (1991) Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin’s disease. Lancet 337:320–322

    Article  PubMed  CAS  Google Scholar 

  • Parsons CH, Adang LA, Overdevest J, O’Connor CM, Taylor JR Jr et al (2006) KSHV targets multiple leukocyte lineages during long-term productive infection in NOD/SCID mice. J Clin Invest 116:1963–1973

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C et al (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276

    Article  PubMed  CAS  Google Scholar 

  • Polack A, Hortnagel K, Pajic A, Christoph B, Baier B et al (1996) c-myc activation renders proliferation of Epstein-Barr virus (EBV)-transformed cells independent of EBV nuclear antigen 2 and latent membrane protein 1. Proc Natl Acad Sci USA 93:10411–10416

    Article  PubMed  CAS  Google Scholar 

  • Qian LW, Xie J, Ye F, Gao SJ (2007) Kaposi’s sarcoma-associated herpesvirus infection promotes invasion of primary human umbilical vein endothelial cells by inducing matrix metalloproteinases. J Virol 81:7001–7010

    Article  PubMed  CAS  Google Scholar 

  • Qin Z, Freitas E, Sullivan R, Mohan S, Bacelieri R et al (2010) Upregulation of xCT by KSHV-encoded microRNAs facilitates KSHV dissemination and persistence in an environment of oxidative stress. PLoS Pathog 6:e1000742

    Article  PubMed  CAS  Google Scholar 

  • Raab-Traub N (2002) Epstein-Barr virus in the pathogenesis of NPC. Semin Cancer Biol 12:431–441

    Article  PubMed  CAS  Google Scholar 

  • Radkov SA, Kellam P, Boshoff C (2000) The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med 6:1121–1127

    Article  PubMed  CAS  Google Scholar 

  • Rainbow L, Platt GM, Simpson GR, Sarid R, Gao SJ et al (1997) The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J Virol 71:5915–5921

    PubMed  CAS  Google Scholar 

  • Raso GM, Pacilio M, Esposito E, Coppola A, Di Carlo R et al (2002) Leptin potentiates IFN-gamma-induced expression of nitric oxide synthase and cyclo-oxygenase-2 in murine macrophage J774A.1. Br J Pharmacol 137:799–804

    Article  PubMed  CAS  Google Scholar 

  • Ruf IK, Lackey KA, Warudkar S, Sample JT (2005) Protection from interferon-induced apoptosis by Epstein-Barr virus small RNAs is not mediated by inhibition of PKR. J Virol 79:14562–14569

    Article  PubMed  CAS  Google Scholar 

  • Ruf IK, Rhyne PW, Yang C, Cleveland JL, Sample JT (2000) Epstein-Barr virus small RNAs potentiate tumorigenicity of Burkitt lymphoma cells independently of an effect on apoptosis. J Virol 74:10223–10228

    Article  PubMed  CAS  Google Scholar 

  • Ryan JL, Morgan DR, Dominguez RL, Thorne LB, Elmore SH et al (2009) High levels of Epstein-Barr virus DNA in latently infected gastric adenocarcinoma. Lab Invest 89:80–90

    Article  PubMed  CAS  Google Scholar 

  • Sadagopan S, Sharma-Walia N, Veettil MV, Bottero V, Levine R et al (2009) Kaposi’s sarcoma-associated herpesvirus upregulates angiogenin during infection of human dermal microvascular endothelial cells, which induces 45S rRNA synthesis, antiapoptosis, cell proliferation, migration, and angiogenesis. J Virol 83:3342–3364

    Article  PubMed  CAS  Google Scholar 

  • Saha A, Murakami M, Kumar P, Bajaj B, Sims K et al (2009) Epstein-Barr virus nuclear antigen 3C augments Mdm2-mediated p53 ubiquitination and degradation by deubiquitinating Mdm2. J Virol 83:4652–4669

    Article  PubMed  CAS  Google Scholar 

  • Samaniego F, Markham PD, Gallo RC, Ensoli B (1995) Inflammatory cytokines induce AIDS-Kaposi’s sarcoma-derived spindle cells to produce and release basic fibroblast growth factor and enhance Kaposi’s sarcoma-like lesion formation in nude mice. J Immunol 154:3582–3592

    PubMed  CAS  Google Scholar 

  • Samaniego F, Markham PD, Gendelman R, Gallo RC, Ensoli B (1997) Inflammatory cytokines induce endothelial cells to produce and release basic fibroblast growth factor and to promote Kaposi’s sarcoma-like lesions in nude mice. J Immunol 158:1887–1894

    PubMed  CAS  Google Scholar 

  • Samaniego F, Markham PD, Gendelman R, Watanabe Y, Kao V et al (1998) Vascular endothelial growth factor and basic fibroblast growth factor present in Kaposi’s sarcoma (KS) are induced by inflammatory cytokines and synergize to promote vascular permeability and KS lesion development. Am J Pathol 152:1433–1443

    PubMed  CAS  Google Scholar 

  • Samols MA, Hu J, Skalsky RL, Renne R (2005) Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcoma-associated herpesvirus. J Virol 79:9301–9305

    Article  PubMed  CAS  Google Scholar 

  • Samols MA, Skalsky RL, Maldonado AM, Riva A, Lopez MC et al (2007) Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog 3:e65

    Article  PubMed  CAS  Google Scholar 

  • Saridakis V, Sheng Y, Sarkari F, Holowaty MN, Shire K et al (2005) Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell 18:25–36

    Article  PubMed  CAS  Google Scholar 

  • Sedger LM, Shows DM, Blanton RA, Peschon JJ, Goodwin RG et al (1999) IFN-gamma mediates a novel antiviral activity through dynamic modulation of TRAIL and TRAIL receptor expression. J Immunol 163:920–926

    PubMed  CAS  Google Scholar 

  • Shair KH, Schnegg CI, Raab-Traub N (2008) EBV latent membrane protein 1 effects on plakoglobin, cell growth, and migration. Cancer Res 68:6997–7005

    Article  PubMed  CAS  Google Scholar 

  • Sharma-Walia N, Paul AG, Bottero V, Sadagopan S, Veettil MV et al (2010) Kaposi’s sarcoma associated herpes virus (KSHV) Induced COX-2: a key factor in latency, inflammation, angiogenesis. Cell survival and invasion. PLoS Pathog 6:e1000777

    Article  PubMed  CAS  Google Scholar 

  • Sharp TV, Boshoff C (2000) Kaposi’s sarcoma-associated herpesvirus: from cell biology to pathogenesis. IUBMB Life 49:97–104

    Article  PubMed  CAS  Google Scholar 

  • Sin SH, Fakhari FD, Dittmer DP (2010) The viral latency-associated nuclear antigen augments the B-cell response to antigen in vivo. J Virol 84:10653–10660

    Article  PubMed  CAS  Google Scholar 

  • Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A et al (2007) Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol 81:12836–12845

    Article  PubMed  CAS  Google Scholar 

  • Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D et al (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood 86:1276–1280

    PubMed  CAS  Google Scholar 

  • Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6:447–458

    Article  PubMed  CAS  Google Scholar 

  • Staskus KA, Zhong W, Gebhard K, Herndier B, Wang H et al (1997) Kaposi’s sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J Virol 71:715–719

    PubMed  CAS  Google Scholar 

  • Staudt MR, Kanan Y, Jeong JH, Papin JF, Hines-Boykin R et al (2004) The tumor microenvironment controls primary effusion lymphoma growth in vivo. Cancer Res 64:4790–4799

    Article  PubMed  CAS  Google Scholar 

  • Sturzl M, Blasig C, Schreier A, Neipel F, Hohenadl C et al (1997) Expression of HHV-8 latency-associated T0.7 RNA in spindle cells and endothelial cells of AIDS-associated, classical and African Kaposi’s sarcoma. Int J Cancer 72:68–71

    Article  PubMed  CAS  Google Scholar 

  • Sugawara Y, Mizugaki Y, Uchida T, Torii T, Imai S et al (1999) Detection of Epstein-Barr virus (EBV) in hepatocellular carcinoma tissue: a novel EBV latency characterized by the absence of EBV-encoded small RNA expression. Virology 256:196–202

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Matta H, Chaudhary PM (2003) The human herpes virus 8-encoded viral FLICE inhibitory protein protects against growth factor withdrawal-induced apoptosis via NF-kappa B activation. Blood 101:1956–1961

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Matta H, Lu G, Chaudhary PM (2006) Induction of IL-8 expression by human herpesvirus 8 encoded vFLIP K13 via NF-kappaB activation. Oncogene 25:2717–2726

    Article  PubMed  CAS  Google Scholar 

  • Swanton C, Mann DJ, Fleckenstein B, Neipel F, Peters G et al (1997) Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature 390:184–187

    Article  PubMed  CAS  Google Scholar 

  • Takada K (2000) Epstein-Barr virus and gastric carcinoma. Mol Pathol 53:255–261

    Article  PubMed  CAS  Google Scholar 

  • Talbot SJ, Weiss RA, Kellam P, Boshoff C (1999) Transcriptional analysis of human herpesvirus-8 open reading frames 71, 72, 73, K14, and 74 in a primary effusion lymphoma cell line. Virology 257:84–94

    Article  PubMed  CAS  Google Scholar 

  • Taylor AL, Marcus R, Bradley JA (2005) Post-transplant lymphoproliferative disorders (PTLD) after solid organ transplantation. Crit Rev Oncol Hematol 56:155–167

    Article  PubMed  Google Scholar 

  • Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E et al (1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386:517–521

    Article  PubMed  CAS  Google Scholar 

  • Tomkowicz B, Singh SP, Lai D, Singh A, Mahalingham S et al (2005) Mutational analysis reveals an essential role for the LXXLL motif in the transformation function of the human herpesvirus-8 oncoprotein, kaposin. DNA Cell Biol 24:10–20

    Article  PubMed  CAS  Google Scholar 

  • Tornesello ML, Biryahwaho B, Downing R, Hatzakis A, Alessi E et al (2010) Human herpesvirus type 8 variants circulating in Europe, Africa and North America in classic, endemic and epidemic Kaposi’s sarcoma lesions during pre-AIDS and AIDS era. Virology 398:280–289

    Article  PubMed  CAS  Google Scholar 

  • Tsao SW, Tramoutanis G, Dawson CW, Lo AK, Huang DP (2002a) The significance of LMP1 expression in nasopharyngeal carcinoma. Semin Cancer Biol 12:473–487

    Article  PubMed  CAS  Google Scholar 

  • Tsao SW, Wang X, Liu Y, Cheung YC, Feng H et al (2002b) Establishment of two immortalized nasopharyngeal epithelial cell lines using SV40 large T and HPV16E6/E7 viral oncogenes. Biochim Biophys Acta 1590:150–158

    Article  PubMed  CAS  Google Scholar 

  • Uccini S, Monardo F, Stoppacciaro A, Gradilone A, Agliano AM et al (1990) High frequency of Epstein-Barr virus genome detection in Hodgkin’s disease of HIV-positive patients. Int J Cancer 46:581–585

    Article  PubMed  CAS  Google Scholar 

  • Uchida J, Yasui T, Takaoka-Shichijo Y, Muraoka M, Kulwichit W et al (1999) Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science 286:300–303

    Article  PubMed  CAS  Google Scholar 

  • Umbach JL, Cullen BR (2010) In-depth analysis of Kaposi’s sarcoma-associated herpesvirus microRNA expression provides insights into the mammalian microRNA-processing machinery. J Virol 84:695–703

    Article  PubMed  CAS  Google Scholar 

  • Wang HW, Trotter MW, Lagos D, Bourboulia D, Henderson S et al (2004) Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet 36:687–693

    Article  PubMed  CAS  Google Scholar 

  • Weiss LM, Movahed LA, Warnke RA, Sklar J (1989) Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin’s disease. N Engl J Med 320:502–506

    Article  PubMed  CAS  Google Scholar 

  • Weiss LM, Chen YY, Liu XF, Shibata D (1991) Epstein-Barr virus and Hodgkin’s disease. A ­correlative in situ hybridization and polymerase chain reaction study. Am J Pathol 139:1259–1265

    PubMed  CAS  Google Scholar 

  • Weiss LM, Strickler JG, Warnke RA, Purtilo DT, Sklar J (1987) Epstein-Barr viral DNA in tissues of Hodgkin’s disease. Am J Pathol 129:86–91

    PubMed  CAS  Google Scholar 

  • Wilson C, Wilson T, Johnston PG, Longley DB, Waugh DJ (2008) Interleukin-8 signaling attenuates TRAIL- and chemotherapy-induced apoptosis through transcriptional regulation of c-FLIP in prostate cancer cells. Mol Cancer Ther 7:2649–2661

    Article  PubMed  CAS  Google Scholar 

  • Wilson JB, Weinberg W, Johnson R, Yuspa S, Levine AJ (1990) Expression of the BNLF-1 oncogene of Epstein-Barr virus in the skin of transgenic mice induces hyperplasia and aberrant expression of keratin 6. Cell 61:1315–1327

    Article  PubMed  CAS  Google Scholar 

  • Wu TC, Mann RB, Charache P, Hayward SD, Staal S et al (1990) Detection of EBV gene expression in Reed-Sternberg cells of Hodgkin’s disease. Int J Cancer 46:801–804

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Pan H, Yoo S, Gao SJ (2005) Kaposi’s sarcoma-associated herpesvirus induction of AP-1 and interleukin 6 during primary infection mediated by multiple mitogen-activated protein kinase pathways. J Virol 79:15027–15037

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Hagan MK, Offermann MK (1994) Induction of IL-6 gene expression in Kaposi’s sarcoma cells. J Immunol 152:943–955

    PubMed  CAS  Google Scholar 

  • Yang TY, Chen SC, Leach MW, Manfra D, Homey B et al (2000) Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi’s sarcoma. J Exp Med 191:445–454

    Article  PubMed  CAS  Google Scholar 

  • Yao L, Salvucci O, Cardones AR, Hwang ST, Aoki Y et al (2003) Selective expression of stromal-derived factor-1 in the capillary vascular endothelium plays a role in Kaposi sarcoma pathogenesis. Blood 102:3900–3905

    Article  PubMed  CAS  Google Scholar 

  • Yi F, Saha A, Murakami M, Kumar P, Knight JS et al (2009) Epstein-Barr virus nuclear antigen 3C targets p53 and modulates its transcriptional and apoptotic activities. Virology 388:236–247

    Article  PubMed  CAS  Google Scholar 

  • Yu MC, Yuan JM (2002) Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol 12:421–429

    Article  PubMed  Google Scholar 

  • Yu MC, Ho JH, Lai SH, Henderson BE (1986) Cantonese-style salted fish as a cause of nasopharyngeal carcinoma: report of a case-control study in Hong Kong. Cancer Res 46:956–961

    PubMed  CAS  Google Scholar 

  • Zhao Y, Yao Y, Xu H, Lambeth L, Smith LP et al (2009) A functional MicroRNA-155 ortholog encoded by the oncogenic Marek’s disease virus. J Virol 83:489–492

    Article  PubMed  CAS  Google Scholar 

  • Ziegelbauer J, Grundhoff A, Ganem D (2006) Exploring the DNA binding interactions of the Kaposi’s sarcoma-associated herpesvirus lytic switch protein by selective amplification of bound sequences in vitro. J Virol 80:2958–2967

    Article  PubMed  CAS  Google Scholar 

  • Ziegelbauer JM, Sullivan CS, Ganem D (2009) Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet 41:130–134

    Article  PubMed  CAS  Google Scholar 

  • zur Hausen H, Schulte-Holthausen H, Klein G, Henle W, Henle G et al (1970) EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature 228:1056–1058

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bala Chandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Everly, D., Sharma-Walia, N., Sadagopan, S., Chandran, B. (2012). Herpesviruses and Cancer. In: Robertson, E. (eds) Cancer Associated Viruses. Current Cancer Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0016-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0016-5_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9999-3

  • Online ISBN: 978-1-4614-0016-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics