Skip to main content

Recent Results on the Average Time Behavior of Some Algorithms in Computational Geometry

  • Conference paper
Computer Science and Statistics: Proceedings of the 13th Symposium on the Interface

Abstract

We give a brief inexhaustive survey of recent results that can be helpful in the average time analysis of algorithms in computational geometry. Most fast average time algorithms use one of three principles: bucketing, divide-and-conquer (merging), or quick elimination (throw-away). To illustrate the different points, the convex hull problem is taken as our prototype problem. We also discuss searching, sorting, finding the Voronoi diagram and the minimal spanning tree, identifying the set of maximal vextors, and determining the diameter of a set and the minimum covering sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.G. AKL, H. MEIJER: “Hybrid sorting algorithms: a survey”, Department of Computing and Information Science, Queen’s University, Technical Report 80–97, 1980.

    Google Scholar 

  2. S.G. AKL, G.T. TOUSSAINT: “A fast convex hull algorithm”, Information Processing Letters, vol. 7, pp. 219–222, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. AVIS: “On the complexity of finding the convex hull of a set of points”, Technical Report SOCS 79.2, School of Computer Science, McGill University, Montreal, 1979.

    Google Scholar 

  4. O. BARNDORFF-NIELSEN, M. SOBEL: “On the distribution of the number of admissible points in a vector random sample”, Theory of Probability and its Applications, vol. 11, pp. 249–269, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  5. J.L. Bentley, J.H. FRIEDMAN: “Data structures for range searching”, Computing Surveys, vol. 11, pp. 398–409, 1979.

    Article  Google Scholar 

  6. J.L. BENTLEY, M.I. SHAMOS: “Divide and conquer for linear expected time”, Information Processing Letters, vol. 7, pp. 87–91, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.L. BENTLEY, B.W. WEIDE, A.C. YAO:“Optimal expected-time algorithms for closest point problems”, ACM Transactions of Mathematical Software, vol. 6, pp. 563- 580, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. BHATTACHARYA: “Applications of computational geometry to pattern recognition problems”, Ph.D. Dissertation, McGill University, Montreal, 1980.

    Google Scholar 

  9. K.Q. BROWN: “Voronoi diagrams from convex hulls”, Information Processing Letters, vol. 9, pp. 227–228, 1979.

    Google Scholar 

  10. H. CARNAL:“Die konvexe Hülle von n rotationssymmetrische verteilten Punkten”, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, vol. 15, pp. 168–176, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. CHERITON, R.E. TARJAN: “Finding minimum spanning trees”, SIAM Journal of Computing, vol. 5, pp. 724–742, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. DEVROYE: “A note on finding convex hulls via maximal vectors”, Information Processing Letters, vol. 11, pp. 53–56, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. DEVROYE: “Some results on the average time for sorting and searching in Rd, Manuscript, School of Computer Science, McGill University, Montreal, 1981a.

    Google Scholar 

  14. L. DEVROYE: “On the average complexity of some bucketing algorithms”, Computers and Mathematics with Applications, to appear, 1981b.

    Google Scholar 

  15. L. DEVROYE: “Moment inequalities for random variables in computational geometry”, Manuscript, School of Computer Science, McGill University, Montreal, 1981c.

    Google Scholar 

  16. L. DEVROYE: “How to reduce the average complexity of convex hull finding algorithms”, Computing, to appear, 1981d.

    Google Scholar 

  17. L. DEVROYE, T. KLINCSEK: “On the average time behavior of distributive sorting algorithms”, Computing, vol. 26, pp. 1–7, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  18. L. DEVROYE, G.T. TOUSSAINT: “A note on linear expected time algorithms for finding convex hulls”, Computing, to appear, 1981.

    Google Scholar 

  19. W.F. EDDY: “A new convex hull algorithm for planar sets”, ACM Transactions of Mathematical Software, vol. 3, pp. 398–403, 1977 •

    Article  MATH  Google Scholar 

  20. J. ELZINGA, D. HEARN: “The minimum covering sphere problem”, Management Science, vol. 19, pp. 96–104, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. ELZINGA, D. HEARN: “The minimum sphere covering a convex polyhedron”, Naval Research Logistics Quarterly, vol. 21, pp. 715–718, 1974.

    Article  MathSciNet  Google Scholar 

  22. R.L. FRANCIS, J.A. WHITE: Facility Layout and Location: An Analytical Approach, Prentice-Hall, 1974.

    Google Scholar 

  23. R. GRAHAM: “An efficient algorithm for determining the convex hull of a finite planar set”, Information Processing Letters, vol. 1, pp. 132–133, 1972.

    Article  MATH  Google Scholar 

  24. R.N. HORSPOOL: “Constructing the Voronoi diagram in the plane”, Technical Report SOCS 79.12, School of Computer Science, McGill University, Montreal, 1979.

    Google Scholar 

  25. R.A. JARVIS: “On the identification of the convex hull of a finite set of points in the plane”, Information Processing Letters, vol. 2, pp. 18–21, 1973.

    Article  MATH  Google Scholar 

  26. N.L. JOHNSON, S. KOTZ: Distributions in Statistics: Continuous Multivariate Distributions, John Wiley, New York, 1972.

    MATH  Google Scholar 

  27. D. KNUTH: The Art of Computer Programming, vol. 3: Sorting and Searching, Addison-Wesley, Reading, Mass., 2nd Ed., 1975.

    Google Scholar 

  28. R.J. LIPTON, R.E. TARJAN: “Applications of a planar separator theorem”, 18th Annual IEEE Symposium on the Foundations of Computer Science, pp. 162–170, 1977.

    Google Scholar 

  29. H. RAYNAUD: “Sur le comportement asymptotique de l’enveloppe convexe d’un nuage de points tirés au hasard dans Rn, Comptes Rendus de l’Académie des Sciences de Paris, vol. 261, pp. 627–629, 1965.

    MathSciNet  MATH  Google Scholar 

  30. A. RENYI, R. SULANKE: “Über die konvexe Hülle von n zufällig gewählten Punkten I”, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, vol. 2, pp. 75–84, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. RENYI, R. SULANKE: “Über die konvexe Hülle von n zufällig gewählten Punkten II”, Zeitschrift für Wahrscheinlichkeitstheorieund verwandte Gebiete, vol. 3, pp. 138–147, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. RENYI, R. SULANKE: “Zufällige konvexe Polygone in einem Ringgebeit”, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebeite, vol. 9, pp. 146–157, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  33. R. SEDGEWICK: “The analysis of quicksort programs”, Acta Informatica, vol. 7, pp. 327–355, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  34. R. SEDGEWICK: “Implementing quicksort programs”, Communications of the ACM, vol. 21, pp. 847–857, 1978.

    Article  MATH  Google Scholar 

  35. M.I. SHAMOS: “Computational geometry”, Ph.D. Dissertation, Yale University, New Haven, Connecticut, 1978.

    Google Scholar 

  36. M.I. SHAMOS: Seminar given at McGill University, 1979.

    Google Scholar 

  37. M.l. SHAMOS, D. HOEY: “Closest-point problems”, Proceedings of the 16th IEEE Symposium on the Foundations of Computer Science, pp. 151–162, 1975.

    Google Scholar 

  38. G.T. TOUSSAINT: “Pattern recognition and geometrical complexity”, Proceedings of the 5th International Conference on Pattern Recognition and Image Processing, Miami, Florida, 1980.

    Google Scholar 

  39. B.W. WEIDE: “Statistical methods in algorithm design and analysis”, Ph.D. Dissertation, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1978.

    Google Scholar 

  40. A.C. YAO: “An O(|E|loglog|V|) algorithm for finding minimum spanning trees”, Information Processing Letters, vol. 4, pp. 21–23, 1975.

    Article  MATH  Google Scholar 

  41. A.C. YAO: “On constructing minimum spanning trees in k-dimensional space and related problems”, Research Report STAN-CS-77–642, Department of Computer Science, Stanford University, Stanford, 1977

    Google Scholar 

  42. A.C. YAO: “A lower bound to finding convex hulls”, Technical Report STAN-CS-79- 733, Department of Computer Science, Stanford, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York Inc.

About this paper

Cite this paper

Devroye, L. (1981). Recent Results on the Average Time Behavior of Some Algorithms in Computational Geometry. In: Eddy, W.F. (eds) Computer Science and Statistics: Proceedings of the 13th Symposium on the Interface. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9464-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9464-8_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-90633-1

  • Online ISBN: 978-1-4613-9464-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics