Skip to main content

Finiteness Theorems for Abelian Varieties over Number Fields

  • Chapter
Arithmetic Geometry

Abstract

Let K be a finite extension of ℚ, A an abelian variety defined over K, π = Gal(K̄/K) the absolute Galois group of K, and l a prime number. Then π acts on the (so-called) Tate module

$$ {T_l}(A) = \mathop{{\lim }}\limits_{{\mathop{ \leftarrow }\limits_n }} \,A[{l^n}](\overline K ) $$

The goal of this chapter is to give a proof of the following results:

  1. (a)

    The representation of π on \( {T_l}(A){ \otimes_{{{\mathbb{Z}_l}}}}{\mathbb{Q}_l} \) s is semisimple.

  2. (b)

    The map

    $$ {\text{En}}{{\text{d}}_K}(A){ \otimes_{\mathbb{Z}}}{\mathbb{Z}_l} \to {\text{En}}{{\text{d}}_{\pi }}({T_l}(A)) $$

    is an isomorphism.

  3. (c)

    Let S be a finite set of places of K, and let d > 0. Then there are only finitely many isomorphism classes of abelian varieties over K with polarizations of degree d which have good reduction outside of S.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-1-4613-8655-1_16

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arakelov, S. Families of curves with fixed degeneracies. Math. USSR Izv., 5 (1971), 1277–132.

    Article  Google Scholar 

  2. Arakelov, S. An intersection theory for divisors on an arithmetic surface. Math. USSR Izv., 8 (1974), 1167–1180.

    Article  Google Scholar 

  3. Baily, W. L. and Borel, A. Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math., 84 (1966), 442–528.

    Article  MathSciNet  MATH  Google Scholar 

  4. Deligne, P. and Mumford, D. The irreducibility of the space of curves of a given genus. Publ. Math. I.H.E.S., 36 (1969), 75–110.

    MathSciNet  MATH  Google Scholar 

  5. Faltings, G. Calculus on arithmetic surfaces. Ann. Math.

    Google Scholar 

  6. Faltings, G. Arakelov’s theorem for abelian varieties. Invent. Math., 73 (1983), 337–347.

    Article  MathSciNet  MATH  Google Scholar 

  7. Moret-Bailly, L. Variétés abéliennes polarisées sur les corps de fonctions. C. R. Acad. Sci, Paris, 296 (1983), 267–270.

    MathSciNet  MATH  Google Scholar 

  8. Namikawa, Y. Toroidal Compactification of Siegel Spaces. Lecture Notes in Mathematics, 812. Springer-Verlag: Berlin, Heidelberg, New York, 1980.

    MATH  Google Scholar 

  9. Parshin, A. N. Algebraic curves over function fields, I. Math. USSR Izv., 2 (1968), 1145–1170.

    Article  MATH  Google Scholar 

  10. Raynaud, M. Schémas en groupes de type (p,,p). Bull. Soc. Math. Fr., 102 (1974), 241–280.

    MathSciNet  MATH  Google Scholar 

  11. Szpiro, L. Sur le théorème de rigidité de Parsin et Arakelov. Astérisque, 64 (1979), 169–202.

    MathSciNet  MATH  Google Scholar 

  12. Szpiro, L. Séminaire sur les pinceaux de courbes de genre au moins deux. Astérisque, 86 (1981).

    Google Scholar 

  13. Tate, J. p-divisible groups. Proceedings of a Conference on Local Fields, Driebergen, 1966. Springer-Verlag: Berlin, Heidelberg, New York, 1967, pp. 158–183.

    Google Scholar 

  14. Tate, J. Endomorphisms of abelian varieties over finite fields. Invent. Math., 2 (1966), 134–144.

    Article  MathSciNet  MATH  Google Scholar 

  15. Zarhin, J. G. Isogenies of abelian varieties over fields of finite characteristics. Math. USSR Sb., 24 (1974), 451–461.

    Article  Google Scholar 

  16. Zarhin, J. G. A remark on endomorphisms of abelian varieties over function fields of finite characteristics. Math. USSR Izv., 8 (1974), 477–480.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Faltings, G. (1986). Finiteness Theorems for Abelian Varieties over Number Fields. In: Cornell, G., Silverman, J.H. (eds) Arithmetic Geometry. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8655-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8655-1_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8657-5

  • Online ISBN: 978-1-4613-8655-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics