Skip to main content

Minimal Models for Curves over Dedekind Rings

  • Chapter
Arithmetic Geometry

Abstract

In this chapter we review the construction by Lichtenbaum [8] and Shafare-vitch [11] of relatively minimal and minimal models of curves over Dedekind rings. We have clpsely followed Lichtenbaum [8]; some proofs have been skipped or summarized so as to go into more detail concerning other parts of the construction. Since the main arguments of [8] apply over Dedekind rings, we work always over Dedekind rings rather than discrete valuation rings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abhyankar, S. On the valuations centered in a local domain, Amer. J. Math., 78 (1956), 321–348.

    Article  MathSciNet  MATH  Google Scholar 

  2. Abhyankar, S. Resolutions of singularities of arithmetical surfaces, in Arithmetical Algebraic Geometry. Harper and Row: New York, 1965.

    Google Scholar 

  3. Artin, M. Lipman’s proof of resolution of singularities for surfaces, this volume, pp. 267–287.

    Google Scholar 

  4. Artin, M. Some numerical criteria for contractibility of curves on algebraic surfaces. Amer. J. Math., 84 (1962), 485–496.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourbaki, N. Algèbre Commutative. Eléments de Mathematiques, 27, 28, 30, 31. Hermann: Paris, 1961–65.

    Google Scholar 

  6. Grothendieck, A. Eléments de géométrie algébrique (EGA), I-IV. Publ. Math. I.H.E.S., 4, 8, 11, 17, 20, 24, 28, 32 (1960–67).

    Google Scholar 

  7. Hartshorne, R. Algebraic Geometry. Springer-Verlag: New York, 1977.

    MATH  Google Scholar 

  8. Lichtenbaum, S. Curves over discrete valuation rings, Amer. J. Math., 25, no. 2 (1968), 380–405.

    Article  MathSciNet  Google Scholar 

  9. Lipman, J. Rational singularities with applications to algebraic surfaces and unique factorization. Publ. Math. I.H.E.S., 36 (1969), 195–279.

    MathSciNet  MATH  Google Scholar 

  10. Mumford, D. The topology of normal singularities of an algebraic surface and a criterion for simplicity. Publ. Math. I.H.E.S., 9 (1961), 5–22.

    MathSciNet  MATH  Google Scholar 

  11. Shafarevitch, I. Lectures on Minimal Models and Birational Transformations of Two-dimensional Schemes. Tata Institute: Bombay, 1966.

    Google Scholar 

  12. Zariski, O. and Samuel, P. Commutative Algebra, Vol. I. Van Nostrand: Princeton, NJ, 1958.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Chinburg, T. (1986). Minimal Models for Curves over Dedekind Rings. In: Cornell, G., Silverman, J.H. (eds) Arithmetic Geometry. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8655-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8655-1_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8657-5

  • Online ISBN: 978-1-4613-8655-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics