Skip to main content

The Molecular Basis of Ovarian Cell Death

  • Chapter
Polycystic Ovary Syndrome

Part of the book series: Serono Symposia USA ((SERONOSYMP))

Abstract

The destiny of the vast majority of ovarian follicles formed during the perinatal period in vertebrate species is atretic degeneration (1–3). The reasons why certain follicles possess or gain a competitive survival advantage over other follicles to thwart death, complete the process of maturation, and ultimately release an egg at ovulation, remain a mystery. Previous studies of the morphologic changes that accompany granulosa cell demise during atresia provided the first evidence that physiologic mechanisms of cell death, such as apoptosis, may serve as the fundamental process by which follicular atresia is initiated and completed (reviewed in 1–3). These morphologic observations linking granulosa cell pyknosis to atresia have recently been supported by numerous biochemical studies that provided conclusive evidence of a fundamental role for apoptosis in atretic degeneration (4–9). Using internucleosomal DNA cleavage as a marker for identifying and quantitating the onset and progression of granulosa cell death, several advances have been made in understanding the hormonal signaling events that influence the fate of granulosa cells and, hence, the follicle (10–15). Of greater interest, however, is the possibility that the intracellular effectors that lead to the initiation of granulosa cell death during atresia may share many common features such as those recently described for apoptosis in extragonadal cell systems. Therefore, this chapter discusses evidence suggesting a potential function for products encoded by “cell death genes,” including members of the ced-9/bcl-2, tumor suppressor, oxidative stress response, and ced-3/interleukin-1β-converting enzyme (ICE) gene families, in the life and death decisions made by granulosa cells during follicular development. Due to space limitations, the hormonal control of apoptosis in granulosa cells during atresia will not be discussed in detail here; the reader is referred elsewhere for this information (10–15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Byskov AG. Follicular atresia. In: Jones Re, ed. The vertebrate ovary. New York: Plenum Press, 1988: 533–62.

    Google Scholar 

  2. Tsafriri A, Braw RH. Experimental approaches to atresia in mammals. Oxf Rev Reprod Biol 1984; 6: 226–65.

    PubMed  CAS  Google Scholar 

  3. Hirshfield AN. Development of follicles in the mammalian ovary. Int Rev Cytol 1991; 124: 43–101.

    Article  PubMed  CAS  Google Scholar 

  4. Tilly JL, Kowalski KI, Johnson AL, Hsueh AJW. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology 1991; 129: 2799–801.

    Article  PubMed  CAS  Google Scholar 

  5. Hughes FM Jr, Gorospe WC. Biochemical identification of apoptosis (programmed cell death) in granulosa cells: evidence for a potential mechanism underlying follicular atresia. Endocrinology 1991; 129: 2415–22.

    Article  PubMed  CAS  Google Scholar 

  6. Tilly JL, Kowalski KI, Schomberg DW, Hsueh AJW. Apoptosis in atretic ovarian follicles is associated with selective decreases in messenger ribonucleic acid transcripts for gonadotropin receptors and cytochrome P450 aromatase. Endocrinology 1992; 131: 1670–6.

    Article  PubMed  CAS  Google Scholar 

  7. Dharmarajan AM, Goodman SB, Tilly KI, Tilly JL. Apoptosis during functional corpus luteum regression: evidence of a role for chorionic gonadotropin in promoting luteal cell survival. Endocr J (Endocrine) 1994; 2: 295–303.

    CAS  Google Scholar 

  8. Jolly PD, Tisdall DJ, Heath DA, Lun S, McNatty KP. Apoptosis in bovine granulosa cells in relation to steroid synthesis, cyclic adenosine 3’,5’-monophosphate response to follicle-stimulating hormone and luteinizing hormone, and follicular atresia. Biol Reprod 1994; 51: 934–44.

    Article  PubMed  CAS  Google Scholar 

  9. Tilly JL. Ovarian follicular atresia: a model to study the mechanisms of physiological cell death. Endocr J (Endocrine) 1993; 1: 67–72.

    Google Scholar 

  10. Tilly JL, Billig H, Kowalski KI, Hsueh AJW. Epidermal growth factor and fibroblast growth factor suppress the spontaneous onset of apoptosis in cultured rat ovarian granulosa cells and follicles by a tyrosine kinase-dependent mechanism. Mol Endocrinol 1992; 6: 1942–50.

    Article  PubMed  CAS  Google Scholar 

  11. Billig H, Furuta I, Hsueh AJW. Gonadotropin-releasing hormone directly induces apoptotic death in the rat ovary: biochemical and in situ detection of DNA fragmentation in granulosa cells. Endocrinology 1994; 134: 245–52.

    Article  PubMed  CAS  Google Scholar 

  12. Chun S-Y, Billig H, Tilly JL, Furuta I, Tsafriri A, Hsueh AJW. Gonadotropin suppression of apoptosis in cultured preovulatory follicles: mediatory role of endogenous insulin-like growth factor I. Endocrinology 1994; 135: 1845–53.

    Article  PubMed  CAS  Google Scholar 

  13. Flaws JA, DeSanti A, Tilly KI, Kugu K, Javid RO, Johnson AL, et al. Vasoactive intestinal peptide-mediated suppression of apoptosis in the ovary: potential mechanisms of action and evidence of a conserved anti-atretogenic role through evolution. Endocrinology 1995; 136: 4351–9.

    Article  PubMed  CAS  Google Scholar 

  14. Tilly JL, Tilly KI, Kenton ML, Johnson AL. Expression of members of the bd-2 gene family in the immature rat ovary: equine chorionic gonadotropinmediated inhibition of granulosa cell apoptosis is associated with decreased bax and constitutive bc1–2 and bcl-x,ong messenger ribonucleic acid levels. Endocrinology 1995; 136: 232–41.

    Article  PubMed  CAS  Google Scholar 

  15. Tilly JL, Tilly KI. Inhibitors of oxidative stress mimic the ability of follicle-stimulating hormone to suppress apoptosis in cultured rat ovarian follicles. Endocrinology 1995; 136: 242–52.

    Article  PubMed  CAS  Google Scholar 

  16. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–57.

    Article  PubMed  CAS  Google Scholar 

  17. Wyllie AH. Cell death: a new classification separating apoptosis from necrosis. In: Bowen ID, Lockshin R, eds. Cell death in biology and pathology. New York: Chapman and Hall, 1981: 9–34.

    Google Scholar 

  18. Vaux DL. Toward an understanding of the molecular mechanisms of physiological cell death. Proc Natl Acad Sci USA 1993; 90: 786–9.

    Article  PubMed  CAS  Google Scholar 

  19. Ellis RE, Yuan J, Horvitz HR. Mechanisms and functions of cell death. Annu Rev Cell Biol 1991; 7: 663–98.

    Article  PubMed  CAS  Google Scholar 

  20. Hoffman B, Liebermann DA. Molecular controls of apoptosis: differentiation/ growth arrest primary response genes, proto-oncogenes, and tumor suppressor genes as positive & negative modulators. Oncogene 1994; 9: 1807–12.

    PubMed  CAS  Google Scholar 

  21. Oltvai ZN, Korsmeyer SJ. Checkpoints of dueling dimers foil death wishes. Cell 1994; 79: 189–92.

    Article  PubMed  CAS  Google Scholar 

  22. Stellar H. Mechanisms and genes of cellular suicide. Science 1995; 267: 1445–9.

    Article  Google Scholar 

  23. Wyllie AH. The genetic regulation of apoptosis. Curr Opin Genetics Dev 1995; 5: 97–104.

    Article  CAS  Google Scholar 

  24. Hengartner MO, Horvitz HR. C. eleganscell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bd-2. Cell 1994; 76: 655–76.

    Article  Google Scholar 

  25. Vaux DL, Weissman IL, Kim SL. Prevention of programmed cell death in Caenorhabditis elegansby human bd-2. Science 1992; 258: 1955–7.

    Article  PubMed  CAS  Google Scholar 

  26. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bd-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74: 609–19.

    Article  PubMed  CAS  Google Scholar 

  27. Yin X-M, Oltvai ZN, Korsmeyer SJ. BH1 and BH2 domains of Bc1–2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 1994; 369: 321–3.

    Article  PubMed  CAS  Google Scholar 

  28. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB. Bd-x, a bc1–2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74: 597–608.

    Article  PubMed  CAS  Google Scholar 

  29. Sato T, Hanada M, Bodrug S, Irie S, Iwama N, Boise LH, et al. Interactions among members of the Bd-2 protein family analyzed with a yeast two-hybrid system. Proc Natl Acad Sci USA 1994; 91: 9238–42.

    Article  PubMed  CAS  Google Scholar 

  30. Hockenberry DM, Oltvai ZN, Yin X-M, Milliman CL, Korsmeyer SJ. Bc1–2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993; 75: 241–51.

    Article  Google Scholar 

  31. Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, Ord T, Bredesen DE. Bc1–2 inhibition of neural death: decreased generation of reactive oxygen species. Science 1993; 262: 1274–7.

    Article  PubMed  CAS  Google Scholar 

  32. Steinman HM. The Bd-2 oncoprotein functions as a pro-oxidant. J Biol Chem 1995; 270: 3487–90.

    PubMed  CAS  Google Scholar 

  33. Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev 1994; 74: 139–62.

    PubMed  CAS  Google Scholar 

  34. McConkey DJ, Hartzell P, Nicotera P, Orrenius S. Stimulation of endogenous endonuclease in cells exposed to oxidative stress. Toxicol Lett 1989; 42: 123–30.

    Article  Google Scholar 

  35. Buttke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunol Today 1994; 15: 7–10.

    Article  PubMed  CAS  Google Scholar 

  36. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991; 51: 6304–11.

    PubMed  CAS  Google Scholar 

  37. Zambetti GP, Levine AJ. A comparison of the biological activities of wild-type and mutant p53. FASEB J 1993; 7: 855–65.

    PubMed  CAS  Google Scholar 

  38. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M. Wildtype p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 1991; 352: 345–7.

    Article  PubMed  CAS  Google Scholar 

  39. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993; 362: 849–52.

    Article  PubMed  CAS  Google Scholar 

  40. Miyashita T, Krajewski S, Krajewski M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC. Tumor suppressor p53 is a regulator of bc1–2 and bax gene expression in vitro and in vivo. Oncogene 1994; 9: 1799–805.

    PubMed  CAS  Google Scholar 

  41. Miyashita T, Harigai M, Hanada M, Reed JC. Identification of a p53-dependent negative response element in the bc1–2 gene. Cancer Res 1994; 54: 3131–5.

    PubMed  CAS  Google Scholar 

  42. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293–9.

    Article  PubMed  CAS  Google Scholar 

  43. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, et al. A novel heterodimeric cysteine protease is required for interleukin-1ß processing in monocytes. Nature 1992; 356: 768–74.

    Article  PubMed  CAS  Google Scholar 

  44. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR. The C. elegansdeath gene ced-3 encodes a protein similar to mammalian interleukin-1 ß-converting enzyme. Cell 1993; 75: 641–752.

    Article  PubMed  CAS  Google Scholar 

  45. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J. Induction of apoptosis in fibroblasts by IL-1ß-converting enzyme, a mammalian homolog of the C. eleganscell death gene ced-3. Cell 1993; 75: 653–60.

    Article  PubMed  CAS  Google Scholar 

  46. Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath PR, Salvesen GS, Pickup DJ. Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-lß converting enzyme. Cell 1992; 69: 597–604.

    Article  PubMed  CAS  Google Scholar 

  47. Gagliardini V, Fernandez P-A, Lee RKK, Drexler HCA, Rotello RJ, Fishman MC, Yuan J. Prevention of vertebrate neuronal death by the crmA gene. Science 1994; 263: 826–8.

    Article  PubMed  CAS  Google Scholar 

  48. Tewari M, Dixit VM. Fas-and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J Biol Chem 1995; 270: 3255–60.

    Article  PubMed  CAS  Google Scholar 

  49. Wang L, Miura M, Bergeron L, Zhu H, Yuan J. Ich-1, an ICE/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 1994; 78: 739–50.

    Article  PubMed  CAS  Google Scholar 

  50. Kumar S, Tomooka Y, Noda M. Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun 1992; 185: 1155–61.

    Article  PubMed  CAS  Google Scholar 

  51. Fernandes-Alnemri T, Litwack G, Alnemri ES. CPP32, a novel human protein with homology to Caenorhabditis eleganscell death protein Ced-3 and mammalian interleukin-10-converting enzyme. J Biol Chem 1994; 269: 30761–4.

    PubMed  CAS  Google Scholar 

  52. Kumar S, Kinoshita M, Noda M, Copeland NG, Jenkins NA. Induction of apoptosis by the mouse Nedd 2 gene which encodes a protein similar to the product of the C. eleganscell death gene ced-3 and the mammalian IL-1ßconverting enzyme. Genes Dev 1994; 8: 1613–26.

    Article  PubMed  CAS  Google Scholar 

  53. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 1994; 371: 346–7.

    Article  PubMed  CAS  Google Scholar 

  54. Casciola-Rosen LA, Miller DK, Anhalt GJ, Rosen A. Specific cleavage of the 70-kDa protein component of the Ul small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death. J Biol Chem 1994; 269: 30757–60.

    PubMed  CAS  Google Scholar 

  55. Skinner MK. Mesenchymal (stromal)-epithelial cell interactions in the testis and ovary which regulate gonadal function. Reprod Fertil Dev 1990; 2: 237–43.

    Article  PubMed  CAS  Google Scholar 

  56. Schomberg DW. Life or death for the granulosa cell: hormone or growth factor combinations which stimulate 3H-thymidine incorporation also prevent apoptosis. Biol Reprod 1992; 48 (suppl 1): 142.

    Google Scholar 

  57. Johnson AL, Li Z, Tilly JL. Expression of c-mycand bc1–2 mRNA during ovarian follicle development. Biol Reprod 1993; 48 (suppl 1): 152.

    Google Scholar 

  58. Johnson AL, Tilly JL. Expression of bd-x protooncogene mRNA in granulosa cells during ovarian follicular development. Biol Reprod 1994; 50 (suppl 1): 93.

    Google Scholar 

  59. Ratts VS, Flaws JA, Kolp R, Sorenson CM, Tilly JL. Ablation of bd-2 gene expression decreases the numbers of oocytes and primordial follicles established in the post-natal female mouse gonad. Endocrinology 1995; 136: 3665–8.

    Article  PubMed  CAS  Google Scholar 

  60. Tilly KI, Banerjee S, Banerjee PP, Tilly JL. Expression of the p53 and Wilms’ tumor suppressor genes in the rat ovary: gonadotropin repression in vivo and immunohistochemical localization of nuclear p53 protein to apoptotic granulosa cells of atretic follicles. Endocrinology 1995; 136: 1394–402.

    Article  PubMed  CAS  Google Scholar 

  61. Flaws JA, Kugu K, Trbovich AM, Tilly KI, DeSanti A, Hirshfield AN, Tilly JL. Interleukin-113-converting enzyme-related proteases (IRPs) and mammalian cell death: dissociation of IRP-induced oligonucleosomal endonuclease activity from morphological apoptosis in granulosa cells of the ovarian follicle. Endocrinology 1995; 136: 5042–53.

    Article  PubMed  CAS  Google Scholar 

  62. Trbovich AM, Tilly JL. Specific cleavage of U1 small nuclear ribonucleoprotein (SNRP) during ovarian granulosa cell apoptosis and follicular atresia. Proceedings from the 77th Annual Meeting of The Endocrine Society, Washington, DC 1995; 74.

    Google Scholar 

  63. Richards JS. Maturation of ovarian follicles: actions and interactions of pituitary and ovarian hormones on follicular cell development. Physiol Rev 1980; 60: 51–89.

    PubMed  CAS  Google Scholar 

  64. Hsueh AJW, Bicsak TA, Jia X-C, Dahl KD, Fauser BCJM, Galway AB, et al. Granulosa cells as hormone targets: the role of biologically-active follicle-stimulating hormone in reproduction. Recent Prog Horm Res 1989; 45: 209–77.

    PubMed  CAS  Google Scholar 

  65. Martin SJ, O’Brien GA, Nishioka WK, McGahon AJ, Mahboubi A, Saido TC, Green DR. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J Biol Chem 1995; 270: 6425–8.

    Article  PubMed  CAS  Google Scholar 

  66. Gatzuli E, Aten RF, Behrman HR. Inhibition of gonadotropin action and progesterone synthesis by xanthine oxidase in rat luteal cells. Endocrinology 1991; 128: 2253–8.

    Article  PubMed  CAS  Google Scholar 

  67. Musicki B, Aten RF, Behrman HR. Inhibition of protein synthesis and hormone-sensitive steroidogenesis in response to hydrogen peroxide in rat luteal cells. Endocrinology 1994; 134: 588–94.

    Article  PubMed  CAS  Google Scholar 

  68. Rueda BR, Tilly KI, Hansen TR, Hoyer PB, Tilly JL. Expression of superoxide dismutase, catalase and glutathione peroxidase in the bovine corpus luteum: evidence supporting a role for oxidative stress in luteolysis. Endocrine 1995; 3: 227–32.

    Article  PubMed  CAS  Google Scholar 

  69. Tilly JL. Use of the terminal transferase DNA labeling reaction for the biochemical and in situ analysis of apoptosis. In: Celis JE, ed. Cell biology: a laboratory handbook. Orlando: Academic Press, 1994: 330–7.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Tilly, J.L., Hirshfield, A.N. (1996). The Molecular Basis of Ovarian Cell Death. In: Chang, R.J. (eds) Polycystic Ovary Syndrome. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8483-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8483-0_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8485-4

  • Online ISBN: 978-1-4613-8483-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics