Skip to main content

Physics for Device Simulations and its Verification by Measurements

  • Conference paper
Semiconductors

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 59))

  • 384 Accesses

Abstract

The motivations for using computers to simulate the electrical characteristics of transistors are discussed. Our work and that of others in the area of device physics and modeling are described. We compare conventional device physics with an alternative approach to device physics that is more directly traceable to quantum-mechanical concepts. We then apply this new approach to quasi-neutral regions, space-charge regions, and regions with high levels of carrier injection. Examples of applying quantum-mechanically-based device physics to energy band diagrams for bipolar transistors are given. The limits for using theoretical results from uniform media in numerical simulations of devices with large concentration gradients are discussed. Calculations of the effective intrinsic carrier concentrations for gallium arsenide and silicon are also given along with published data. In addition, calculations of the mobilities for GaAs that are based in part on quantum-mechanical phase shifts are compared with published data. We then conclude with a discussion of the requirements for verifying and calibrating device simulators for the submicrometer domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Blue and C. L. Wilson, IEEE Trans. Electron Devices ED-30, 1056 (1983).

    Article  Google Scholar 

  2. J. R. Klauder, Ann. Phys. 14, 43 (1961).

    Article  MATH  Google Scholar 

  3. R. A. Abram, G. N. Childs, and P. A. Saunderson, J. Phys. C17, 6105 (1984).

    Google Scholar 

  4. J. del Alamo, S. Swirhun, and R. M. Swanson, Proceedings of the IEDM, 290 (1985).

    Google Scholar 

  5. H. S. Bennett, IEEE Trans. Electron Devices ED-30, 920 (1983).

    Article  Google Scholar 

  6. H. S. Bennett and D. E. Fuoss, IEEE Trans. Electron Devices ED-32, 2069 (1985).

    Article  Google Scholar 

  7. M. Kurata and J. Yoshida, IEEE Trans. Electron Devices ED-31, 467 (1984).

    Article  Google Scholar 

  8. P. M. Asbeck, D. L. Miller, R. Asatourian, and C. G. Kirkpatrick, IEEE Electron Device Letters EDL-3, 403 (1982).

    Article  Google Scholar 

  9. M. S. Adler, Solid-State Electronics 26, 387 (1983).

    Article  Google Scholar 

  10. S. P. Gaur, P. A. Habitz, Y. J. Park, R. K. Cook, Y.-S. Huang, and L. F. Wagner, IBM Journal of Research and Development 29, 242 (1985).

    Article  Google Scholar 

  11. M. S. Lundstom, R. J. Schwartz, and J. L. Gray, Solid-State Electronics 24, 195 (1981).

    Article  Google Scholar 

  12. A. H. Marshak, Solid-State Electronics 31, 1551 (1988).

    Article  Google Scholar 

  13. W. Slotboom and H. C. deGraaff, Solid-State Electronics 19, 586 (1976).

    Article  Google Scholar 

  14. H. B. Callen, Thermodynamics, New York: Wiley & Sons, 1960, p. 207.

    MATH  Google Scholar 

  15. F. Reif, Fundamentals of Statistical and Thermal Physics, New York: McGraw-Hill, 1965, p. 324.

    Google Scholar 

  16. D. D. Tang, IEEE Trans. Electron Devices ED-27, 563 (1980).

    Article  Google Scholar 

  17. A. W. Weider, Proceedings of the IEDM, 460 (1978).

    Google Scholar 

  18. M. S. Adler and G. E. Possin, IEEE Trans. Electron Devices ED-28, 1053 (1981) and references therein.

    Google Scholar 

  19. G. E. Possin, M. S. Adler, and B. J. Baliga, IEEE Trans. Electron Devices ED-31, 3 (1984).

    Article  Google Scholar 

  20. J. Wagner and J. A. del Alamo, J. Appl. Phys. 63, 425 (1988).

    Article  Google Scholar 

  21. G. E. Possin, M. S. Adker, and B. J. Baliga, Proceedings of the ASTM Symposium on Lifetime Factors in Silicon, ASTM STP 712, 192 (1980).

    Book  Google Scholar 

  22. D. J. Roulston, N. D. Arora, and S. G. Chamberlain, IEEE Trans. Electron Devices ED-29, 284 (1982).

    Article  Google Scholar 

  23. W. Shockley and W. T. Read, Jr., Phys. Rev. 87, 835 (1952).

    Article  MATH  Google Scholar 

  24. H. S. Bennett, Solid-State Electronics 28, 193 (1985).

    Article  Google Scholar 

  25. H. S. Bennett, J. Appl. Phys. 59, 2837 (1986).

    Article  Google Scholar 

  26. H. S. Bennett and J. R. Lowney, J. Appl. Phys. 62, 521 (1987).

    Article  Google Scholar 

  27. H. S. Bennett, Solid-State Electronics 26, 1157 (1983).

    Article  Google Scholar 

  28. J. R. Lowney and H. S. Bennett, J. Appl. Physics 69, 7102 (1991).

    Article  Google Scholar 

  29. J. R. Lowney and W. R. Thurber, Electron. Lett. 20, 142 (1984).

    Article  Google Scholar 

  30. B. R. Chawla and H. K. Gummel, IEEE Trans. Electron Devices ED-18, 178 (1971).

    Article  Google Scholar 

  31. J. R. Lowney, Solid-State Electronics 28, 187 (1985).

    Article  Google Scholar 

  32. H. S. Bennett, J. Appl. Phys. 55, 3582 (1984).

    Article  Google Scholar 

  33. S. C. Jain, R. P. Mertens, P. Van Mieghem, M. G. Mauk, M. Ghannam, G. Borghs, and R. Van Overstraeten, Proceedings of the IEEE 1988 Bipolar Circuits and Technology Meeting, 1988, J. Jopke, Ed., p. 195.

    Chapter  Google Scholar 

  34. H. C. Chen, S. S. Li, and K. W. Teng, Solid-State Electronics 32, 339 (1989).

    Article  Google Scholar 

  35. A. Neugroschel, J. S. Wang, and F. A. Lindholm, IEEE Electron Device Letters, EDL-6, 253 (1985).

    Article  Google Scholar 

  36. M. Capizzi, S. Modesti, A. Frova, J. L. Staehli, M. Guzzi, and R. A. Logan, Phys. Rev. B 29, 2028 (1984).

    Article  Google Scholar 

  37. J. R. Lowney, Proceedings of the IEEE 1988 Bipolar Circuits and Technology Meeting, 1988, J. Jopke, Ed., p. 188.

    Chapter  Google Scholar 

  38. P. T. Landsberg and D. J. Robbins, Solid-State Electronics 28, 137 (1985).

    Article  Google Scholar 

  39. J. R. Lowney, J. Appl. Phys. 59, 2048 (1986).

    Article  Google Scholar 

  40. T. J. de Lyon, H. C. Casey, Jr., and A. J. SpringThorpe, J. Appl. Phys. 65, 2530 (1989).

    Article  Google Scholar 

  41. A. Yariv, Quantum Electronics, New York: Wiley & Sons, 1967, p. 282.

    Google Scholar 

  42. M. C. Wu, Y. K. Su, K. Y. Cheng, and C. Y. Chang, Solid-State Electronics 31, 251 (1988).

    Article  Google Scholar 

  43. J. R. Lowney, R. D. Larrabee, and W. R. Thurber, IEEE Proceedings of the Custom Integrated Circuits Conference, May 1983, p. 152.

    Google Scholar 

  44. J. R. Lowney and H. S. Bennett, J. Appl. Phys. 65, 4823 (1989).

    Article  Google Scholar 

  45. H. S. Bennett and J. R. Lowney, Solid-State Electronics 33, 675 (1990).

    Article  Google Scholar 

  46. J. R. Lowney, A. H. Kahn, J. L. Blue, and C. L. Wilson, J. Appl. Phys. 52, 4075 (1981).

    Article  Google Scholar 

  47. J. R. Lowney, J. Appl. Phys. 64, 4544 (1988).

    Article  Google Scholar 

  48. S. M. Sze, Physics of Semiconductor Devices, New York: Wiley & Sons, 1981, 2nd edition, p.21 and p. 850.

    Google Scholar 

  49. W. Walukiewicz, L. Lagowski, L. Jastrzebski, M. Lichtensteiger, and H. Gatos, J. Appl. Phys. 50, 899 (1979).

    Article  Google Scholar 

  50. J. R. Lowney and H. S. Bennett, J. Appl. Phys. 53, 433 (1982).

    Article  Google Scholar 

  51. L. Reggiani, Hot-Electron Transport in Semiconductors (Springer-Verlag, New York, 1985), p.7ff.

    Google Scholar 

  52. D. J. Howarth and E. H. Sondheimer, Proc. Roy. Soc. London A 219, 53 (1953).

    Article  MATH  Google Scholar 

  53. H. Ehrenreich, Phys. Rev. 120, 1951 (1960).

    Article  Google Scholar 

  54. J. D. Wiley in Semiconductors and Semimetals, Ed. by Willardson and Beer (Academic Press, New York, 1974) Vol. 10, p. 91.

    Google Scholar 

  55. P. Lugli and D. K. Ferry, Appl. Phys. Lett. 46, 594 (1985).

    Article  Google Scholar 

  56. R. Katoh, M. Kurata, and J. Yoshida, IEEE Trans. Electron Devices ED-36, 846, (1989).

    Article  Google Scholar 

  57. M. E. Kim, A. Das, and S. D. Senturia, Phys. Rev. B 18, 6890 (1978).

    Article  Google Scholar 

  58. H. Brooks and C. Herring, Phys. Rev. 83, 879 (1951).

    Google Scholar 

  59. L. F. Shampine and H. A. Watts, DEPAC-Design of a User Oriented Package of ODE Solvers, Sandia National Laboratories Technical Report, SAND-79–2374, 1979.

    Google Scholar 

  60. W. Walukiewicz, J. Lagowski, L. Jastrzebski, and H. C. Gatos, J. Appl. Phys. 50, 5040 (1979).

    Article  Google Scholar 

  61. D. Chattopadhyay, J. Appl. Phys. 53, 3330 (1982).

    Article  Google Scholar 

  62. J. Appel, Phys. Rev. 125, 1815 (1962).

    Article  MATH  Google Scholar 

  63. M. Luong and A. W. Shaw, Phys. Rev. B 4, 2436 (1971).

    Article  Google Scholar 

  64. R. A. Hopfel, J. Shah, P. A. Wolff, and A. C. Gossard, Phys. Rev. B 37, 6941 (1988).

    Article  Google Scholar 

  65. P. Van Halen and D. L. Pulfrey, J. Appl. Phys. 59, 2264 (1986).

    Article  Google Scholar 

  66. D. L. Pulfrey, private communication.

    Google Scholar 

  67. J. R. Meyer and F. J. Bartoli, Phys. Rev. B 36, 5989 (1987).

    Article  Google Scholar 

  68. H. J. Lee and D. C. Look, J. Appl. Phys. 54, 4446 (1983).

    Article  Google Scholar 

  69. H. Ito and T. Ishibashi, J. Appl. Phys. 65, 5197 (1989).

    Article  Google Scholar 

  70. S. Tiwari and S. L. Wright, Appl. Phys. Lett. 56, 563 (1990).

    Article  Google Scholar 

  71. T. Furuta and M. Tomizawa, Appl. Phys. Lett. 56, 824 (1990).

    Article  Google Scholar 

  72. M. L. Lovejoy, B. M. Keyes, M. E. Klausmeier-Brown, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “Time-of-Flight Measurements of Zero-Field Electron Diffusion in P+-GaAs,” Extended Abstracts for the 22nd International Conference of Solid State Devices and Materials, Sendai, Japan, pages 613–616 (1990).

    Google Scholar 

  73. SEDAN Semiconductor Device Analysis, Stanford University, Stanford, California, January 1980 version.

    Google Scholar 

  74. These identifications do not imply recommendation or endorsement by the National Institute of Standards and Technology.

    Google Scholar 

  75. J. Albers, P. Roitman, and C. L. Wilson, IEEE Trans. Electron Devices ED-30, 1453 (1983).

    Article  Google Scholar 

  76. M. Tomizawa, T. Ishibashi, H. S. Bennett, and J. R. Lowney, Extended Abstracts of the 1991 VLSI Process and Device Modeling Workshop, Oiso, Japan, May 1991 and submitted for publication.

    Google Scholar 

  77. D. R. Myers, J. A. Lott, J. R. Lowney, J. F. Klem, and C. P. Tigges, Proceedings of the 1990 International Electron Devices Meeting 90CH2865-4, 759 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Bennett, H.S., Lowney, J.R. (1994). Physics for Device Simulations and its Verification by Measurements. In: Coughran, W.M., Cole, J., Lloyd, P., White, J.K. (eds) Semiconductors. The IMA Volumes in Mathematics and its Applications, vol 59. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8410-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8410-6_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8412-0

  • Online ISBN: 978-1-4613-8410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics